Amorphous Nanomaterials

Amorphous Nanomaterials
Автор книги: id книги: 2021569     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18562,8 руб.     (202,45$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527826353 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Covers the fundamental concept, synthesis,characterization, properties, and applications of nanoscaled amorphous materials.

Оглавление

Lin Guo. Amorphous Nanomaterials

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Amorphous Nanomaterials

Foreword

Preface

1 Introduction. 1.1 Introduction of Amorphous Materials

1.2 Structural Differences between Amorphous Materials and Crystals

1.2.1 Crystals and Quasicrystals

1.2.2 Amorphous Materials

1.3 History of Amorphous Materials

1.3.1 Establishment of Crystallography

1.3.2 Enlightenment of Amorphous Materials

1.3.3 Modern Amorphous Materials 1-Disordered Elementary Substance

1.3.4 Modern Amorphous Materials 2-Metallic Glass

1.3.5 Modern Amorphous Materials 3-Nontraditional Amorphous Nanomaterials

1.4 Growth Mechanisms of Amorphous Nanomaterials. 1.4.1 Classical Nucleation Theory

1.4.2 Multistep Transformation Mechanism with Amorphous Participation

1.4.3 Complex Growth Process in Solution

1.5 Summary and Outlook

References

2 Local Structure and Electronic State of Amorphous Nanomaterials. 2.1 Spherical Aberration-Corrected Transmission Electron Microscopy. 2.1.1 Introduction

2.1.2 Spherical Aberration-Corrected Transmission Electron Microscopy

2.1.3 Electron Energy Loss Spectroscopy in TEM

2.1.4 Applications in Amorphous Nanomaterial Characterization

2.1.5 Summary and Outlook

2.2 X-ray Absorption Fine Structure Spectrum. 2.2.1 Introduction

2.2.2 Extended X-ray Absorption Fine Structure

2.2.3 X-ray Absorption Near-Edge Structure

2.2.4 Application in Amorphous Nanomaterial Characterization

2.2.5 Summary and Outlook

References

3 Defect Characterization of Amorphous Nanomaterials. 3.1 Introduction

3.2 Positron Annihilation Spectrum

3.3 Electron Paramagnetic Resonance

3.4 Photoluminescence Spectroscopy

3.5 Summary and Outlook

References

4 Synthesis of 0D Amorphous Nanomaterials. 4.1 Introduction

4.2 Bottom-Up Method. 4.2.1 Solution-Based Chemical Method

4.2.2 Thermal Treatment Method

4.2.3 Other Methods

4.3 Top-Down Method

4.4 Summary and Outlook

References

5 Synthesis of 1D Amorphous Nanomaterials. 5.1 Introduction

5.2 Hydrothermal/Solvothermal Method

5.3 Chemical Precipitation Method

5.4 Electrochemical Deposition Method

5.5 Templating Method

5.6 Other Synthetic Methods

5.7 Summary and Outlook

References

6 Synthesis of 2D Amorphous Nanomaterials. 6.1 Introduction

6.2 Thermal Decomposition Method

6.3 Exfoliation Method

6.4 Deposition Method. 6.4.1 Physical Vapor Deposition Method

6.4.2 Electrodeposition Method

6.5 Chemical Precipitation Method

6.6 Templating Method

6.7 Phase Transformation Method

6.8 Sol–Gel Method

6.9 Element Doping Method

6.10 Summary and Outlook

References

7 Synthesis of 3D Amorphous Nanomaterials. 7.1 Introduction

7.2 Template-Engaged Strategies

7.2.1 Coordinating Etching Method

7.2.2 Acid/Alkali Etching Method

7.2.3 Redox Etching Method

7.2.4 Self-Templated Method

7.3 Electrochemical Method

7.4 Hydrothermal/Solvothermal Method

7.5 Common Solution Method

7.6 Laser/Ultrasonic-Assisted Solution Method

7.7 Other Synthetic Methods

7.8 Summary and Outlook

References

8 Synthesis of Amorphous-Coated and Amorphous-Doped Nanomaterials. 8.1 Introduction

8.2 Amorphous Coated Nanomaterials by ALD

8.2.1 Amorphous Metal Oxide Coating

8.2.2 Amorphous Metal Fluoride Coating

8.3 Amorphous-Coated Nanomaterials With Different Dimensions

8.3.1 1D Amorphous-Coated Nanomaterials

8.3.1.1 Homojunction Structure

8.3.1.2. Hetrojuction Structure

8.3.2 2D Amorphous-Coated Nanomaterials

8.3.2.1. Carbon-Based Nanomaterials

8.3.2.2 Ni-Based Nanomaterials

8.3.2.3 Other Metal-based Nanomaterials

8.3.3 3D Amorphous-Coated Nanomaterials

8.3.3.1 Silica Coating

8.3.3.2 Carbon Coating

8.3.3.3 Metal Oxide Coating

8.3.3.4 Metal Sulfide Coating

8.4 Amorphous-Doped or Hybrid Nanomaterials

8.4.1 2D Amorphous-Doped Nanomaterials

8.4.2 3D Amorphous-Doped Nanomaterial

8.5 Summary and Outlook

References

9 Applications of Amorphous Nanomaterials in Electrocatalysis. 9.1 Introduction

9.2 Fundamentals of Electrocatalysis

9.3 Amorphous Nanomaterials as Electrocatalysts for Water Splitting

9.3.1 Amorphous Nanomaterials for HER. 9.3.1.1 Amorphous Single Metallic Nanomaterials for HER

9.3.1.2 Amorphous Binary Metallic Nanomaterials for HER

9.3.1.3 Amorphous Composite Nanomaterials for HER

9.3.2 Amorphous Nanomaterials for OER

9.3.2.1 Amorphous Single Metallic Nanomaterials for OER

9.3.2.2 Amorphous Binary Metallic Nanomaterials for OER

9.3.2.3 Amorphous Polynary Metal Nanomaterials for OER

9.3.2.4 Amorphous Composites for OER

9.3.3 Amorphous Nanomaterials for ORR

9.3.3.1 Amorphous Noble Metal-based Nanomaterials for ORR

9.3.3.2 Amorphous 3d Metal-based Nanomaterials for ORR

9.3.4 Amorphous Nanomaterials for CRR

9.3.5 Amorphous Nanomaterials for NRR

9.3.6 Amorphous Nanomaterials as Bifunctional Electrocatalysts

9.3.6.1 Amorphous Nanomaterials as Bifunctional Electrocatalysts of HER and OER

9.3.6.2 Amorphous Nanomaterials as Bifunctional Electrocatalysts of ORR and OER

9.4 Summary and Outlook

References

10 Applications of Amorphous Nanomaterials in Batteries. 10.1 Introduction

10.2 Negative Electrodes in Batteries. 10.2.1 Amorphous Phosphorus Compounds

10.2.2 Amorphous Silicon Compounds

10.2.3 Amorphous Transition Metal Oxides

10.2.3.1 Amorphous Iron Oxides

10.2.3.2 Amorphous Titanium Oxides

10.2.3.3 Amorphous Vanadium-Based Oxides

10.2.3.4 Amorphous Tin-Based Oxides

10.2.4 Amorphous Carbon

10.3 Positive Electrodes in Batteries. 10.3.1 Amorphous Ferric Phosphate

10.3.2 Amorphous Vanadium-Based Oxides

10.3.3 Amorphous Metal Polysulfides

10.4 Summary and Outlook

References

11 Applications of Amorphous Nanomaterials in Supercapacitors. 11.1 Introduction

11.2 Applications in Electric Double-Layer Capacitors

11.3 Applications in Pseudocapacitors

11.3.1 Amorphous Metal Oxides

11.3.2 Amorphous Metal Sulfides

11.3.3 Other Amorphous Nanomaterials

11.4 Summary and Outlook

References

12 Applications of Amorphous Nanomaterials in Photocatalysis. 12.1 Introduction

12.2 Photocatalytic Degradation

12.3 Photocatalytic Decomposition of Water

12.4 Photo-Electrocatalysis

12.5 Amorphous Nanomaterial as Cocatalyst in Photocatalysis

12.6 Other Applications in Photocatalysis

12.7 Summary and Outlook

References

13 Engineering Applications of Amorphous Nanomaterials. 13.1 Introduction

13.2 Mechanical Properties of Amorphous Nanomaterials

13.2.1 Amorphous Alloys/Metals

13.2.2 Amorphous Nonmetallic Materials

13.3 Strategy for Enhancing the Mechanical Performance

13.3.1 Introduction of Micro/Nanosecond Phase

13.3.2 Introduction of Micro/Nano-Inhomogeneity

13.3.3 Surface Modification

13.3.4 Amorphous Based Composite Materials

13.4 Summary and Outlook

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Preparation, Characterization and Applications

Lin Guo

.....

Metallic glass showes a unique disordered structure, without defects such as dislocations and grain boundaries in the crystal, endowing them with many unique superior properties. For example, in terms of mechanical properties, metallic glasses exhibit high strength, high hardness, high wear resistance and corrosion resistance, high fatigue resistance, low elastic modulus, large elastic strain limit, etc. Thus, metallic glass possesses broad potential applications in the fields of engineering mechanics, biological sciences, and aerospace. For example, the amorphous alloys in almost every alloy system have achieved several times higher strength than the crystalline material. In 2011, Zhang Tao et al. [17] developed a CoTaB ternary alloy with a compressive strength of 6.0 GPa and a specific strength of 650 Nm g−1, which reached the highest record for the strength of metal materials.

At the same time, the introduction of micro/nanoscale heterogeneous structures or the second phase in bulk amorphous materials could significantly improve the toughness of amorphous materials. In 2007, according to Poisson’s ratio criterion, Wang Weihua et al. [18] adjusted the composition of the Zr–Cu–Ni–Al metallic alloy and prepared an amorphous alloy system with a multilevel microscale heterogeneous structure, which showed high strength (1.7 GPa) and very large compressive plasticity (strain > 150%). These amorphous alloys can even be bent to 90° at room temperature (Figure 1.6a–d). In 2008, WL Johnson et al. [19] improved the composition of the amorphous alloy and controlled the content of each component to synthesize the Zr–Ti–Nb–Cu–Be metallic alloy with a micron-scale precipitated second phase. For the first time, the fracture deformation has been increased to more than 10%, and up to 14%. At the same time, the fracture toughness of the amorphous alloy reached 170 MPa m0.5, indicating an excellent toughness (Figure 1.6e–g).

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Amorphous Nanomaterials
Подняться наверх