Polyurethanes

Polyurethanes
Автор книги: id книги: 1885288     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18244,8 руб.     (198,79$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119669470 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book, cohesively written by an expert author with supreme breadth and depth of perspective on polyurethanes, provides a comprehensive overview of all aspects of the science and technology on one of the most commonly produced plastics.<br /><br /> <ul> <li>Covers the applications, manufacture, and markets for polyurethanes, and discusses analytical methods, reaction mechanisms, morphology, and synthetic routes</li> <li>Provides an up-to-date view of the current markets and trend analysis based on patent activity and updates chapters to include new research</li> <li>Includes two new chapters on PU recycling and PU hybrids, covering the opportunities and challenges in both</li> </ul>

Оглавление

Mark F. Sonnenschein. Polyurethanes

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES ON POLYMER ENGINEERING AND TECHNOLOGY Richard F. Grossman and Domasius Nwabunma, Series Editors

POLYURETHANES. Science, Technology, Markets, and Trends

PREFACE

ACKNOWLEDGMENTS

1 INTRODUCTION

REFERENCES

2 POLYURETHANE BUILDING BLOCKS

2.1 POLYOLS

2.1.1 Polyethers. 2.1.1.1 Building Blocks

2.1.1.2 Polymerization of Alkoxides to Polyethers

2.1.2 Polyester Polyols

2.1.2.1 Polyester Polyol Building Blocks

2.1.2.2 Preparation of Polyester Polyols

2.1.2.3 Aliphatic Polyester Polyols

2.1.2.4 Aromatic Polyester Polyols

2.1.3 Other Polyols. 2.1.3.1 Polycarbonate Polyols

Preparation of Polycarbonate Polyols

2.1.3.2 Polyacrylate Polyols

Preparation of Acrylic Polyols

2.1.4 Filled Polyols

2.1.4.1 Copolymer Polyols

2.1.4.2 PHD Polyols

2.1.4.3 PIPA Polyols

2.1.5 Seed Oil‐Derived Polyols

2.1.5.1 Preparation of Seed Oil‐Derived Polyols. Epoxidation and Ring Opening

Ozonolysis

Hydroformylation and Reduction

Metathesis

2.1.6 Prepolymers

2.2 ISOCYANATES

2.2.1 TDI

2.2.1.1 Conventional Production of TDI

2.2.1.2 Nonphosgene Routes to TDI

Thermolysis of Carbamic Acid,N,N′‐(4‐Methyl‐1,3‐Phenylene)Bis‐,C,C′‐Dimethyl Ester made from the Reaction of Toluene Diamine with Methyl Carbonate

Thermolysis of Carbamic Acid,N,N′‐(4‐Methyl‐1,3‐Phenylene)Bis‐,C,C′‐Dimethyl Ester made from the Reductive Carbonylation of Dinitrotoluene

Isocyanates by Thermal Decomposition of Acyl Azides: The Curtius Rearrangement

2.2.2 Diphenylmethane Diisocyanates (MDI)

2.2.2.1 Production of MDI

2.2.3 Aliphatic Isocyanates

2.2.3.1 Production of Aliphatic Isocyanates. Hexamethylene Diisocyanate (HDI)

Isophorone Diisocyanate (IPDI)

4,4′‐Diisocyanatodicyclohexylmethane (H12MDI)

2.2.3.2 Use of Aliphatic Isocyanates

2.3 CHAIN EXTENDERS

REFERENCES

3 INTRODUCTION TO POLYURETHANE CHEMISTRY. 3.1 INTRODUCTION

3.2 MECHANISM AND CATALYSIS OF URETHANE FORMATION

3.3 REACTIONS OF ISOCYANATES WITH ACTIVE HYDROGEN COMPOUNDS

3.3.1 Urea Formation

3.3.2 Allophanate Formation

3.3.3 Formation of Biurets

3.3.4 Formation of Uretdione (Isocyanate Dimer)

3.3.5 Formation of Carbodiimide

3.3.6 Formation of Uretonimine

3.3.7 Formation of Amides

REFERENCES

4 THEORETICAL CONCEPTS AND TECHNIQUES IN POLYURETHANE SCIENCE

4.1 FORMATION OF POLYURETHANE STRUCTURE

4.2 PROPERTIES OF POLYURETHANES

4.2.1 Models and Calculations for Polymer Modulus

4.2.2 Models for Elastomer Stress–Strain Properties

Factors that Affect Polyurethane Stress–Strain Behavior

Calculating Foam Properties

4.2.3 The Polyurethane Glass Transition Temperature

REFERENCES

5 ANALYTICAL CHARACTERIZATION OF POLYURETHANES

5.1 ANALYSIS OF REAGENTS FOR MAKING POLYURETHANES. 5.1.1 Analysis of Polyols

5.1.1.1 Hydroxyl Number

5.1.1.2 CPR

5.1.2 Analysis of Isocyanates

5.1.2.1 Analysis of pMDI Composition

5.2 INSTRUMENTAL ANALYSIS OF POLYURETHANES

5.2.1 Microscopy

5.2.1.1 Optical Microscopy

5.2.1.2 SEM

5.2.1.3 TEM

5.2.1.4 AFM

5.2.2 IR Spectrometry

5.2.3 X‐Ray Analyses

5.2.3.1 Wide‐Angle X‐Ray Scattering

5.2.3.2 SAXS

5.3 MECHANICAL ANALYSIS

5.3.1 Tensile, Tear, and Elongation Testing

5.3.2 DMA

5.4 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

5.5 FOAM SCREENING: FOAMAT®

REFERENCES

6 POLYURETHANE FLEXIBLE FOAMS: CHEMISTRY AND FABRICATION

6.1 MAKING POLYURETHANE FOAMS

6.1.1 Slabstock Foams

6.1.2 Molded Foams

6.2 FOAM PROCESSES

6.2.1 Surfactancy and Catalysis. 6.2.1.1 Catalysis

6.2.1.2 Surfactancy

6.3 FLEXIBLE FOAM FORMULATION AND STRUCTURE–PROPERTY RELATIONSHIPS. 6.3.1 Screening Tests

6.3.2 Foam Formulation and Structure–Property Relationships

REFERENCES

7 POLYURETHANE FLEXIBLE FOAMS: MANUFACTURE, APPLICATIONS, MARKETS, AND TRENDS

7.1 APPLICATIONS

7.1.1 Furniture

7.1.2 Mattresses and Bedding

7.1.3 Transportation

7.1.4 The Molded Foam Market

7.2 TRENDS IN MOLDED FOAM TECHNOLOGY AND MARKETS

REFERENCES

Notes

8 POLYURETHANE RIGID FOAMS: MANUFACTURE, APPLICATIONS, MARKETS, AND TRENDS

8.1 REGIONAL MARKET DYNAMICS

8.2 APPLICATIONS

8.2.1 Construction Foams

8.2.1.1Polyisocyanurate Foams

8.2.1.2 Spray, Poured, and Froth Foams

Spray Foams

Froth Foams

PIP Foams

8.2.2 Rigid Construction Foam Market Segments

8.2.3 Appliance Foams

8.3 BLOWING AGENTS AND INSULATION FUNDAMENTALS. 8.3.1 Blowing Agents

8.3.2 Blowing Agent Phase‐Out Schedule

8.4 INSULATION FUNDAMENTALS

8.5 TRENDS IN RIGID FOAMS TECHNOLOGY

REFERENCES

9 POLYURETHANE ELASTOMERS: MANUFACTURE, APPLICATIONS, MARKETS, AND TRENDS

9.1 REGIONAL MARKET DYNAMICS

9.2 APPLICATIONS

9.2.1 Footwear

9.2.1.1 Trends in Footwear Applications

9.2.2 Nonfootwear Elastomer Applications and Methods of Manufacture

9.2.2.1 Cast Elastomers

9.2.2.2 Thermoplastic Polyurethanes

9.2.2.3 RIM Elastomers

9.2.2.4 Polyurethane Elastomer Fibers

9.3 TRENDS IN POLYURETHANE ELASTOMERS

REFERENCES

10 POLYURETHANE ADHESIVES AND COATINGS: MANUFACTURE, APPLICATIONS, MARKETS, AND TRENDS. 10.1 ADHESIVES AND COATINGS INDUSTRIES: SIMILARITIES AND DIFFERENCES

10.2 ADHESIVES

10.2.1 Adhesive Formulations. 10.2.1.1 Solvent‐Borne Adhesives

10.2.1.2 Hot‐Melt Adhesives. Nonreactive Hot‐Melt Adhesives

Reactive Hot‐Melt Adhesives

10.2.1.3 Water‐Borne Polyurethane Adhesives

10.3 TRENDS IN POLYURETHANE ADHESIVES

10.4 COATINGS

10.4.1 Polyurethane Coating Formulations

10.4.1.1 Two‐Part Solvent‐Borne Coating

10.4.1.2 Water‐Borne Coatings

10.4.1.3 Water‐Borne Hybrids

10.4.1.4 Ultraviolet‐Cured Water‐Borne Dispersions for Coatings

10.4.1.5 Polyurethane Powder Coatings

10.4.2 Trends in Polyurethane Coatings

REFERENCES

11 SPECIAL TOPIC: MEDICAL USES OF POLYURETHANE

11.1 MARKETS AND PARTICIPANTS

11.2 TECHNOLOGY. 11.2.1 Catheters

11.2.2 Wound Dressings

11.2.3 Bioabsorbable Polyurethanes

11.2.4 Hydrogels

11.2.5 Gloves and Condoms

11.3 FUTURE TRENDS

REFERENCES

12 SPECIAL TOPIC: NONISOCYANATE ROUTES TO POLYURETHANES. 12.1 GOVERNMENTAL REGULATION OF ISOCYANATES

12.2 NONISOCYANATE ROUTES TO POLYURETHANES

12.2.1 Reactions of Polycyclic Carbonates with Polyamines

12.2.2 Direct Transformations of Amines to Urethanes

12.2.3 Reactions of Polycarbamates

12.2.4 Conversion of Hydroxamic Acids to Polyurethane

12.2.5 Conversion of Hydroxylamines to Polyurethanes

REFERENCES

13 POLYURETHANE HYBRID POLYMERS. 13.1 INTRODUCTION

13.2 POLYURETHANE–ACRYLATE HYBRIDS

13.3 URETHANE–EPOXY HYBRIDS

13.4 URETHANE–SILICONE HYBRIDS. 13.4.1 Silicone‐Modified Prepolymers

13.4.2 Urethane–Silicone Hybrids Produced Using Diblock Compatibilizers

13.4.3 Hybrids Employing Covalent and Hydrogen‐Bonded Cross‐Links

13.4.4 Polyurethane Hybridization with Polyhedral Oligomeric Silsesquixanes

13.5 POLYURETHANE–POLYOLEFIN HYBRIDS

13.6 HYBRIDIZATION VIA TRANSURETHANIFICATION

REFERENCES

14 RECYCLING OF POLYURETHANES. 14.1 INTRODUCTION

14.2 GLYCOLYSIS, HYDROLYSIS, AMINOLYSIS, AND ACIDOLYSIS

14.3 PYROLYSIS

14.4 RECYCLE FOR FUEL VALUE

14.5 REGRINDING AND INCORPORATION

REFERENCES

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Polyolefin Blends / Edited by Domasius Nwabunma and Thein Kyu

Polyolefin Composites / Edited by Domasius Nwabunma and Thein Kyu

.....

As commodity products, polyurethanes have achieved a certain establishment status in academic science. However, activity in polyurethane science shows no sign of abating owing to its high potential for design and innovation [1–18]. Figure 1.6 shows total global publication activity, including patents, journal articles, reviews, meeting abstracts, governmental documents, etc., for the years 1954–2019 and for the period 2013–2019 for all of the commodity plastics named in Figure 1.1. While many plastics exhibit publication activity approximately in proportion to their production, polyurethane publication activity is more than double its production. Figure 1.7 shows polyurethane publishing activity by language for the same periods, demonstrating the explosive growth in materials research in China. The steady growth of activity appears independent of general global economic activity. Figure 1.8 quantifies the kinds of publications over this time period, showing that patent publications predominate but open literature activity is nearly as prevalent. In the first edition of this book it was found that open literature and patent literature were produced at very similar levels.

FIGURE 1.6 Publication activity focused on commodity plastics for (a) 1954–2019 and (b) 2013–2019. The total includes all public literature, patent filings, conference proceedings, and books where the subject focus is the plastic. The total number of publications for all listed plastics is 2.5 million.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Polyurethanes
Подняться наверх