Robot Modeling and Control

Robot Modeling and Control
Автор книги: id книги: 1887590     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15031,9 руб.     (163,7$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119524045 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of Robot Modeling and Control , students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis. With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as:  ● Motion-planning, collision avoidance, trajectory optimization, and control of robots ● Popular topics within the robotics industry and how they apply to various technologies ● An expanded set of examples, simulations, problems, and case studies ● Open-ended suggestions for students to apply the knowledge to real-life situations A four-part reference essential for both undergraduate and graduate students, Robot Modeling and Control serves as a foundation for a solid education in robotics and motion planning.

Оглавление

Mark W. Spong. Robot Modeling and Control

Robot Modeling and Control

CONTENTS

List of Tables

List of Illustrations

Guide

Pages

Preface

CHAPTER 1 INTRODUCTION

1.1 Mathematical Modeling of Robots

1.1.1 Symbolic Representation of Robot Manipulators

1.1.2 The Configuration Space

1.1.3 The State Space

1.1.4 The Workspace

1.2 Robots as Mechanical Devices

1.2.1 Classification of Robotic Manipulators

Power Source

Method of Control

Application Area

Geometry

1.2.2 Robotic Systems

1.2.3 Accuracy and Repeatability

1.2.4 Wrists and End Effectors

1.3 Common Kinematic Arrangements

1.3.1 Articulated Manipulator (RRR)

1.3.2 Spherical Manipulator (RRP)

1.3.3 SCARA Manipulator (RRP)

1.3.4 Cylindrical Manipulator (RPP)

1.3.5 Cartesian Manipulator (PPP)

1.3.6 Parallel Manipulator

1.4 Outline of the Text

1.4.1 Manipulator Arms

Chapter 2: Rigid Motions

Chapter 3: Forward Kinematics

Chapter 4: Velocity Kinematics

Chapter 5: Inverse Kinematics

Chapter 6: Dynamics

Chapter 7: Path Planning and Trajectory Generation

Chapter 8: Independent Joint Control

Chapter 9: Nonlinear and Multivariable Control

Chapter 10: Force Control

Chapter 11: Vision-Based Control

Chapter 12: Feedback Linearization

1.4.2 Underactuated and Mobile Robots. Chapter 13: Underactuated Systems

Chapter 14: Mobile Robots

Problems

Notes and References

Note

CHAPTER 2 RIGID MOTIONS

2.1 Representing Positions

2.2 Representing Rotations

2.2.1 Rotation in the Plane

2.2.2 Rotations in Three Dimensions

2.3 Rotational Transformations

Similarity Transformations

2.4 Composition of Rotations

2.4.1 Rotation with Respect to the Current Frame

2.4.2 Rotation with Respect to the Fixed Frame

2.4.3 Rules for Composition of Rotations

2.5 Parameterizations of Rotations

2.5.1 Euler Angles

2.5.2 Roll, Pitch, Yaw Angles

2.5.3 Axis-Angle Representation

2.5.4 Exponential Coordinates

Rodrigues’ Formula

2.6 Rigid Motions

2.6.1 Homogeneous Transformations

2.6.2 Exponential Coordinates for General Rigid Motions

2.7 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 3 FORWARD KINEMATICS

3.1 Kinematic Chains

3.2 The Denavit–Hartenberg Convention

3.2.1 Existence and Uniqueness

3.2.2 Assigning the Coordinate Frames

Summary of the DH Procedure

3.3 Examples

3.3.1 Planar Elbow Manipulator

3.3.2 Three-Link Cylindrical Robot

3.3.3 The Spherical Wrist

3.3.4 Cylindrical Manipulator with Spherical Wrist

3.3.5 Stanford Manipulator

3.3.6 SCARA Manipulator

3.4 Chapter Summary

Problems

Notes and References

CHAPTER 4 VELOCITY KINEMATICS

4.1 Angular Velocity: The Fixed Axis Case

4.2 Skew-Symmetric Matrices

4.2.1 Properties of Skew-Symmetric Matrices

4.2.2 The Derivative of a Rotation Matrix

4.3 Angular Velocity: The General Case

4.4 Addition of Angular Velocities

4.5 Linear Velocity of a Point Attached to a Moving Frame

4.6 Derivation of the Jacobian

4.6.1 Angular Velocity

4.6.2 Linear Velocity

Case 1: Prismatic Joints

Case 2: Revolute Joints

4.6.5 Combining the Linear and Angular Velocity Jacobians

4.7 The Tool Velocity

4.8 The Analytical Jacobian

4.9 Singularities

4.9.1 Decoupling of Singularities

4.9.2 Wrist Singularities

4.9.3 Arm Singularities

4.10 Static Force/Torque Relationships

4.11 Inverse Velocity and Acceleration

4.12 Manipulability

4.13 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 5 INVERSE KINEMATICS

5.1 The General Inverse Kinematics Problem

5.2 Kinematic Decoupling

5.3 Inverse Position: A Geometric Approach

5.3.1 Spherical Configuration

5.3.2 Articulated Configuration

5.4 Inverse Orientation

5.5 Numerical Inverse Kinematics

5.6 Chapter Summary

Problems

Notes and References

CHAPTER 6 DYNAMICS

6.1 The Euler–Lagrange Equations

6.1.1 Motivation

6.1.2 Holonomic Constraints and Virtual Work

6.1.3 D’Alembert’s Principle

6.2 Kinetic and Potential Energy

6.2.1 The Inertia Tensor

6.2.2 Kinetic Energy for an n-Link Robot

6.2.3 Potential Energy for an n-Link Robot

6.3 Equations of Motion

6.4 Some Common Configurations

Two-Link Cartesian Manipulator

Planar Elbow Manipulator

Planar Elbow Manipulator with Remotely Driven Link

Five-Bar Linkage

6.5 Properties of Robot Dynamic Equations

6.5.1 Skew Symmetry and Passivity

6.5.2 Bounds on the Inertia Matrix

6.5.3 Linearity in the Parameters

6.6 Newton–Euler Formulation

6.6.1 Planar Elbow Manipulator Revisited

Forward Recursion Link 1

Forward Recursion: Link 2

Backward Recursion: Link 2

Backward Recursion: Link 1

6.7 Chapter Summary

Problems

Notes and References

CHAPTER 7 PATH AND TRAJECTORY PLANNING

7.1 The Configuration Space

7.1.1 Representing the Configuration Space

7.1.2 Configuration Space Obstacles

7.1.3 Paths in the Configuration Space

7.2 Path Planning for

7.2.1 The Visibility Graph

7.2.2 The Generalized Voronoi Diagram

7.2.3 Trapezoidal Decompositions

7.3 Artificial Potential Fields

7.3.1 Artificial Potential Fields for

The Attractive Field

The Repulsive Field

Gradient Descent Planning

Escaping Local Minima

7.3.2 Potential Fields for

The Attractive Field

The Repulsive Field

Mapping Workspace Forces to Joint Torques

Application to Mobile Robots

Gradient Descent Planning

7.4 Sampling-Based Methods

7.4.1 Probabilistic Roadmaps (PRM)

Sampling the Configuration Space

Connecting Pairs of Configurations

Enhancement

Path Smoothing

7.4.2 Rapidly-Exploring Random Trees (RRTs)

7.5 Trajectory Planning

7.5.1 Trajectories for Point-to-Point Motion

Cubic Polynomial Trajectories

Quintic Polynomial Trajectories

Linear Segments with Parabolic Blends (LSPB)

Minimum-Time Trajectories

7.5.2 Trajectories for Paths Specified by Via Points

7.6 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 8 INDEPENDENT JOINT CONTROL. 8.1 Introduction

8.2 Actuator Dynamics

8.3 Load Dynamics

8.4 Independent Joint Model

8.5 PID Control

8.6 Feedforward Control

8.6.1 Trajectory Tracking

8.6.2 The Method of Computed Torque

8.7 Drive-Train Dynamics

8.8 State Space Design

8.8.1 State Feedback Control

8.8.2 Observers

8.9 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 9 NONLINEAR AND MULTIVARIABLE CONTROL. 9.1 Introduction

9.2 PD Control Revisited

The Effect of Joint Flexibility

9.3 Inverse Dynamics

9.3.1 Joint Space Inverse Dynamics

9.3.2 Task Space Inverse Dynamics

9.3.3 Robust Inverse Dynamics

9.3.4 Adaptive Inverse Dynamics

9.4 Passivity-Based Control

9.4.1 Passivity-Based Robust Control

9.4.2 Passivity-Based Adaptive Control

9.5 Torque Optimization

9.6 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 10 FORCE CONTROL

10.1 Coordinate Frames and Constraints

10.1.1 Reciprocal Bases

Metrics on SO(3) and SE(3)

10.1.2 Natural and Artificial Constraints

10.2 Network Models and Impedance

10.2.1 Impedance Operators

10.2.2 Classification of Impedance Operators

10.2.3 Thévenin and Norton Equivalents

10.3 Task Space Dynamics and Control

10.3.1 Impedance Control

10.3.2 Hybrid Impedance Control

10.4 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 11 VISION-BASED CONTROL

11.1 Design Considerations

11.1.1 Camera Configuration

11.1.2 Image-Based vs. Position-Based Approaches

11.2 Computer Vision for Vision-Based Control

11.2.1 The Geometry of Image Formation

11.2.2 Image Features

Gradient-Based Features

Feature Detection and Tracking

11.3 Camera Motion and the Interaction Matrix

11.4 The Interaction Matrix for Point Features

11.4.1 Velocity Relative to a Moving Frame

11.4.2 Constructing the Interaction Matrix

11.4.3 Properties of the Interaction Matrix for Points

11.4.4 The Interaction Matrix for Multiple Points

11.5 Image-Based Control Laws

11.5.1 Computing Camera Motion

11.5.2 Proportional Control Schemes

11.5.3 Performance of Image-Based Control Systems

11.6 End Effector and Camera Motions

11.7 Partitioned Approaches

11.8 Motion Perceptibility

11.9 Summary

Problems

Notes and References

Notes

CHAPTER 12 FEEDBACK LINEARIZATION

12.1 Background

12.1.1 Manifolds, Vector Fields, and Distributions

12.1.2 The Frobenius Theorem

12.2 Feedback Linearization

12.3 Single-Input Systems

12.4 Multi-Input Systems

12.5 Chapter Summary

Problems

Notes and References

Notes

CHAPTER 13 UNDERACTUATED ROBOTS. 13.1 Introduction

13.2 Modeling

Upper-Actuated and Lower-Actuated Models

Second-Order Constraints

13.3 Examples of Underactuated Robots

13.3.1 The Cart-Pole System

13.3.2 The Acrobot

13.3.3 The Pendubot

13.3.4 The Reaction-Wheel Pendulum

13.4 Equilibria and Linear Controllability

13.4.1 Linear Controllability

Computation of the Linearization

A Necessary Condition for Linear Controllability

13.5 Partial Feedback Linearization

13.5.1 Collocated Partial Feedback Linearization

13.5.2 Noncollocated Partial Feedback Linearization

13.6 Output Feedback Linearization

13.6.1 Computation of the Zero Dynamics

Feedback Linearization of the Reaction-Wheel Pendulum

13.6.2 Virtual Holonomic Constraints

13.7 Passivity-Based Control

13.7.1 The Simple Pendulum

Saturation

13.7.2 The Reaction-Wheel Pendulum

13.7.3 Swingup and Balance of The Acrobot

13.8 Chapter Summary

Problems

Notes and References

Note

CHAPTER 14 MOBILE ROBOTS

14.1 Nonholonomic Constraints

14.2 Involutivity and Holonomy

Filtrations

14.3 Examples of Nonholonomic Systems

14.4 Dynamic Extension

14.5 Controllability of Driftless Systems

14.6 Motion Planning

14.6.1 Conversion to Chained Forms

Steering Using Sinusoids

Chained Form for Higher Dimensional Systems

14.6.2 Differential Flatness

14.7 Feedback Control of Driftless Systems

14.7.1 Stabilizability

14.7.2 Nonsmooth Control

Sliding-Mode Control

Dynamic Extension

14.7.3 Trajectory Tracking. Lyapunov Design

14.7.4 Feedback Linearization

Dynamic Feedback Linearization

14.8 Chapter Summary

Problems

Notes and References

Note

Appendix A TRIGONOMETRY. A.1 The Two-Argument Arctangent Function

A.2 Useful Trigonometric Formulas

Sum-Difference Identities

Double-Angle Identities

Half-Angle Identities

Law of Cosines

Appendix B LINEAR ALGEBRA

B.1 Vectors

B.2 Inner Product Spaces

B.3 Matrices

B.4 Eigenvalues and Eigenvectors

B.5 Differentiation of Vectors

B.6 The Matrix Exponential

B.7 Lie Groups and Lie Algebras

B.8 Matrix Pseudoinverse

B.9 Schur Complement

B.10 Singular Value Decomposition (SVD)

Appendix C LYAPUNOV STABILITY

C.1 Continuity and Differentiability

Gradient, Hessian, and Jacobian

C.2 Vector Fields and Equilibria

C.3 Lyapunov Functions

C.4 Stability Criteria

C.5 Global and Exponential Stability

C.6 Stability of Linear Systems

C.7 LaSalle’s Theorem

C.8 Barbalat’s Lemma

Appendix D OPTIMIZATION

D.1 Unconstrained Optimization

D.2 Constrained Optimization

Appendix E CAMERA CALIBRATION

E.1 The Image Plane and the Sensor Array

E.2 Extrinsic Camera Parameters

E.3 Intrinsic Camera Parameters

E.4 Determining the Camera Parameters

Note

Bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

Mark W. Spong

.....

Figure 2.10 Euler angle representation.

In terms of the basic rotation matrices the resulting rotational transformation can be generated as the product

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Robot Modeling and Control
Подняться наверх