Linear Algebra

Linear Algebra
Автор книги: id книги: 2052588     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 11589,7 руб.     (115,9$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119437604 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

LINEAR ALGEBRA EXPLORE A COMPREHENSIVE INTRODUCTORY TEXT IN LINEAR ALGEBRA WITH COMPELLING SUPPLEMENTARY MATERIALS, INCLUDING A COMPANION WEBSITE AND SOLUTIONS MANUALS Linear Algebra delivers a fulsome exploration of the central concepts in linear algebra, including multidimensional spaces, linear transformations, matrices, matrix algebra, determinants, vector spaces, subspaces, linear independence, basis, inner products, and eigenvectors. While the text provides challenging problems that engage readers in the mathematical theory of linear algebra, it is written in an accessible and simple-to-grasp fashion appropriate for junior undergraduate students.An emphasis on logic, set theory, and functions exists throughout the book, and these topics are introduced early to provide students with a foundation from which to attack the rest of the material in the text. Linear Algebra includes accompanying material in the form of a companion website that features solutions manuals for students and instructors. Finally, the concluding chapter in the book includes discussions of advanced topics like generalized eigenvectors, Schur’s Lemma, Jordan canonical form, and quadratic forms. Readers will also benefit from the inclusion of:A thorough introduction to logic and set theory, as well as descriptions of functions and linear transformationsAn exploration of Euclidean spaces and linear transformations between Euclidean spaces, including vectors, vector algebra, orthogonality, the standard matrix, Gauss-Jordan elimination, inverses, and determinantsDiscussions of abstract vector spaces, including subspaces, linear independence, dimension, and change of basisA treatment on defining geometries on vector spaces, including the Gram-Schmidt processPerfect for undergraduate students taking their first course in the subject matter, Linear Algebra will also earn a place in the libraries of researchers in computer science or statistics seeking an accessible and practical foundation in linear algebra.

Оглавление

Michael L. O'Leary. Linear Algebra

Table of Contents

List of Illustrations

Guide

Pages

Linear Algebra

Preface

Acknowledgments

About the Companion Website

CHAPTER 1 Logic and Set Theory. 1.1 Statements

Connectives

Definition 1.1.1

Definition 1.1.2

Definition 1.1.3

Example 1.1.4

Logical Equivalence

Example 1.1.5

Example 1.1.6

Example 1.1.7

Example 1.1.8

Exercises

1.2 Sets and Quantification

Universal Quantifiers

Definition 1.2.1

Example 1.2.2

Example 1.2.3

Existential Quantifiers

Definition 1.2.4

Example 1.2.5

Example 1.2.6

Negating Quantifiers

Theorem 1.2.7

Example 1.2.8

Example 1.2.9

Example 1.2.10

Set‐Builder Notation

Definition 1.2.11

Example 1.2.12

Example 1.2.13

Example 1.2.14

Set Operations

Definition 1.2.15

Example 1.2.16

Definition 1.2.17

Example 1.2.18

Families of Sets

Definition 1.2.19

Definition 1.2.20

Example 1.2.21

Exercises

1.3 Sets and Proofs

Definition 1.3.1

Definition 1.3.2

Definition 1.3.3

Direct Proof

Theorem 1.3.4 [Direct Proof]

Example 1.3.5

Example 1.3.6

Example 1.3.7

Example 1.3.8

Subsets

Definition 1.3.9

Example 1.3.10

Example 1.3.11

Theorem 1.3.12

Proof

Example 1.3.13

Set Equality

Definition 1.3.14

Example 1.3.15

Example 1.3.16

Example 1.3.17

Indirect Proof

Theorem 1.3.18 [Indirect Proof]

Example 1.3.19

Example 1.3.20

Example 1.3.21

Mathematical Induction

Axiom 1.3.22 [Mathematical Induction]

Theorem 1.3.23

Proof

Example 1.3.24

Exercises

1.4 Functions

Definition 1.4.1

Example 1.4.2

Example 1.4.3

Example 1.4.4

Example 1.4.5

Theorem 1.4.6

Proof

Example 1.4.7

Example 1.4.8

Definition 1.4.9

Example 1.4.10

Injections

Definition 1.4.11

Example 1.4.12

Example 1.4.13

Theorem 1.4.14

Proof

Surjections

Definition 1.4.15

Example 1.4.16

Example 1.4.17

Example 1.4.18

Example 1.4.19

Theorem 1.4.20

Example 1.4.21

Theorem 1.4.22

Proof

Bijections and Inverses

Definition 1.4.23

Definition 1.4.24

Theorem 1.4.25

Proof

Example 1.4.26

Example 1.4.27

Theorem 1.4.28

Proof

Example 1.4.29

Theorem 1.4.30

Corollary 1.4.31

Images and Inverse Images

Definition 1.4.32

Example 1.4.33

Operations

Definition 1.4.34

Definition 1.4.35

Example 1.4.36

Example 1.4.37

Definition 1.4.38

Theorem 1.4.39

Proof

Example 1.4.40

Definition 1.4.41

Definition 1.4.42

Example 1.4.43

Exercises

CHAPTER 2 Euclidean Space

2.1 Vectors

Definition 2.1.1

Example 2.1.2

Vector Operations

Definition 2.1.3

Definition 2.1.4

Theorem 2.1.5

Proof

Example 2.1.6

Theorem 2.1.7

Proof

Corollary 2.1.8 [Cancellation]

Distance and Length

Definition 2.1.9

Example 2.1.10

Theorem 2.1.11 [Cauchy‐Schwartz Inequality]

Proof

Theorem 2.1.12

Proof

Definition 2.1.13

Theorem 2.1.14

Theorem 2.1.15

Proof

Definition 2.1.16

Theorem 2.1.17

Proof

Lines and Planes

Definition 2.1.18

Definition 2.1.19

Definition 2.1.20

Definition 2.1.21

Example 2.1.22

Example 2.1.23

Example 2.1.24

Definition 2.1.25

Example 2.1.26

Example 2.1.27

Example 2.1.28

Exercises

2.2 Dot Product

Definition 2.2.1

Definition 2.2.2

Example 2.2.3

Example 2.2.4

Example 2.2.5

Theorem 2.2.6

Proof

Definition 2.2.7

Theorem 2.2.8

Proof

Lines and Planes

Definition 2.2.9

Theorem 2.2.10

Example 2.2.11

Example 2.2.12

Theorem 2.2.13

Proof

Example 2.2.14

Example 2.2.15

Definition 2.2.16

Orthogonal Projection

Theorem 2.2.17

Proof

Definition 2.2.18

Example 2.2.19

Theorem 2.2.20

Proof

Example 2.2.21

Exercises

2.3 Cross Product

Definition 2.3.1

Theorem 2.3.2

Example 2.3.3

Properties

Theorem 2.3.4

Proof

Theorem 2.3.5 [Lagrange’s Identity]

Proof

Areas and Volumes

Theorem 2.3.6

Proof

Corollary 2.3.7

Example 2.3.8

Example 2.3.9

Exercises

CHAPTER 3 Transformations and Matrices. 3.1 Linear Transformations

Definition 3.1.1

Example 3.1.2

Example 3.1.3

Example 3.1.4

Example 3.1.5

Properties

Theorem 3.1.6

Proof

Theorem 3.1.7

Proof

Theorem 3.1.8

Example 3.1.9

Matrices

Definition 3.1.10

Definition 3.1.11

Example 3.1.12

Definition 3.1.13

Example 3.1.14

Definition 3.1.15 [Matrix Multiplication ‐ Preliminary Form]

Definition 3.1.16

Theorem 3.1.17

Proof

Theorem 3.1.18

Proof

Theorem 3.1.19

Proof

Definition 3.1.20

Example 3.1.21

Theorem 3.1.22

Proof

Exercises

3.2 Matrix Algebra

Addition, Subtraction, and Scalar Multiplication

Definition 3.2.1

Example 3.2.2

Theorem 3.2.3

Proof

Example 3.2.4

Definition 3.2.5

Theorem 3.2.6

Proof

Properties

Definition 3.2.7

Definition 3.2.8

Theorem 3.2.9

Proof

Theorem 3.2.10

Proof

Example 3.2.11

Multiplication

Theorem 3.2.12

Proof

Definition 3.2.13 [Matrix Multiplication]

Theorem 3.2.14

Proof

Example 3.2.15

Example 3.2.16

Theorem 3.2.17

Proof

Theorem 3.2.18

Proof

Identity Matrix

Definition 3.2.19

Lemma 3.2.20

Proof

Theorem 3.2.21

Proof

Corollary 3.2.22

Example 3.2.23

Distributive Law

Theorem 3.2.24 [Distributive Law]

Proof

Matrices and Polynomials

Definition 3.2.25

Theorem 3.2.26

Proof

Exercises

3.3 Linear Operators

Reflections

Definition 3.3.1

Example 3.3.2

Example 3.3.3

Theorem 3.3.4

Proof

Example 3.3.5

Definition 3.3.6

Example 3.3.7

Rotations

Definition 3.3.8

Example 3.3.9

Isometries

Definition 3.3.10

Theorem 3.3.11

Proof

Theorem 3.3.12

Proof

Theorem 3.3.13

Theorem 3.3.14

Proof

Theorem 3.3.15

Definition 3.3.16

Theorem 3.3.17

Proof

Contractions, Dilations, and Shears

Definition 3.3.18

Theorem 3.3.19

Proof

Definition 3.3.20

Exercises

3.4 Injections and Surjections

Kernel

Definition 3.4.1

Theorem 3.4.2

Proof

Theorem 3.4.3

Proof

Example 3.4.4

Range

Theorem 3.4.5

Example 3.4.6

Example 3.4.7

Example 3.4.8

Exercises

3.5 Gauss‐Jordan Elimination

Definition 3.5.1

Example 3.5.2

Definition 3.5.3

Elementary Row Operations

Definition 3.5.4

Example 3.5.5

Definition 3.5.6

Theorem 3.5.7

Definition 3.5.8

Example 3.5.9

Square Matrices

Definition 3.5.10

Example 3.5.11

Example 3.5.12

Example 3.5.13

Example 3.5.14

Example 3.5.15

Theorem 3.5.16

Proof

Nonsquare Matrices

Example 3.5.17

Example 3.5.18

Theorem 3.5.19

Proof

Example 3.5.20

Theorem 3.5.21

Proof

Gaussian Elimination

Definition 3.5.22

Example 3.5.23

Example 3.5.24

Exercises

CHAPTER 4 Invertibility. 4.1 Invertible Matrices

Theorem 4.1.1

Proof

Definition 4.1.2

Theorem 4.1.3

Example 4.1.4

Example 4.1.5

Example 4.1.6

Elementary Matrices

Definition 4.1.7

Example 4.1.8

Theorem 4.1.9

Proof

Corollary 4.1.10

Example 4.1.11

Example 4.1.12

Theorem 4.1.13

Finding the Inverse of a Matrix

Theorem 4.1.14

Proof

Theorem 4.1.15

Proof

Corollary 4.1.16

Example 4.1.17

Systems of Linear Equations

Theorem 4.1.18

Example 4.1.19

Exercises

4.2 Determinants

Definition 4.2.1

Definition 4.2.2

Example 4.2.3

Example 4.2.4

Example 4.2.5

Definition 4.2.6

Theorem 4.2.7

Proof

Example 4.2.8

Theorem 4.2.9

Proof

Multiplying a Row by a Scalar

Example 4.2.10

Adding a Multiple of a Row to Another Row

Lemma 4.2.11

Proof

Definition 4.2.12

Definition 4.2.13

Theorem 4.2.14

Proof

Example 4.2.15

Switching Rows

Theorem 4.2.16

Corollary 4.2.17

Proof

Corollary 4.2.18

Proof

Corollary 4.2.19

Proof

Example 4.2.20

Exercises

4.3 Inverses and Determinants

Uniqueness of the Determinant

Definition 4.3.1

Theorem 4.3.2

Proof

Theorem 4.3.3

Lemma 4.3.4

Proof

Theorem 4.3.5

Proof

Theorem 4.3.6

Proof

Corollary 4.3.7

Example 4.3.8

Equivalents to Invertibility

Theorem 4.3.9

Proof

Example 4.3.10

Theorem 4.3.11

Proof

Example 4.3.12

Theorem 4.3.13

Proof

Example 4.3.14

Theorem 4.3.15

Proof

Products

Theorem 4.3.16

Proof

Theorem 4.3.17

Proof

Lemma 4.3.18

Proof

Theorem 4.3.19

Proof

Theorem 4.3.20

Proof

Exercises

4.4 Applications

Definition 4.4.1

Definition 4.4.2

The Classical Adjoint

Definition 4.4.3

Definition 4.4.4

Theorem 4.4.5

Proof

Symmetric and Orthogonal Matrices

Definition 4.4.6

Example 4.4.7

Theorem 4.4.8

Proof

Corollary 4.4.9

Example 4.4.10

Theorem 4.4.11

Proof

Theorem 4.4.12

Definition 4.4.13

Theorem 4.4.14

Theorem 4.4.15

Proof

Theorem 4.4.16

Example 4.4.17

Theorem 4.4.18

Proof

Corollary 4.4.19

Cramer’s Rule

Theorem 4.4.20 [Cramer’s Rule]

Proof

Example 4.4.21

LU Factorization

Theorem 4.4.22 [LU Factorization]

Example 4.4.23

Example 4.4.24

Area and Volume

Example 4.4.25

Theorem 4.4.26

Theorem 4.4.27

Exercises

CHAPTER 5 Abstract Vectors

5.1 Vector Spaces

Definition 5.1.1

Theorem 5.1.2

Proof

Examples of Vector Spaces

Example 5.1.3

Example 5.1.4

Example 5.1.5

Definition 5.1.6

Example 5.1.7

Example 5.1.8

Example 5.1.9

Linear Transformations

Definition 5.1.10

Example 5.1.11

Example 5.1.12

Example 5.1.13

Theorem 5.1.14

Example 5.1.15

Example 5.1.16

Definition 5.1.17

Theorem 5.1.18

Exercises

5.2 Subspaces

Definition 5.2.1

Examples of Subspaces

Example 5.2.2

Example 5.2.3

Example 5.2.4

Properties

Theorem 5.2.5

Proof

Example 5.2.6

Example 5.2.7

Theorem 5.2.8

Definition 5.2.9

Theorem 5.2.10

Proof

Example 5.2.11

Spanning Sets

Definition 5.2.12

Definition 5.2.13

Example 5.2.14

Theorem 5.2.15

Proof

Example 5.2.16

Example 5.2.17

Kernel and Range

Definition 5.2.18

Theorem 5.2.19

Theorem 5.2.20

Example 5.2.21

Example 5.2.22

Definition 5.2.23

Theorem 5.2.24

Proof

Example 5.2.25

Exercises

5.3 Linear Independence

Definition 5.3.1

Theorem 5.3.2

Proof

Euclidean Examples

Example 5.3.3

Example 5.3.4

Example 5.3.5

Theorem 5.3.6

Proof

Abstract Vector Space Examples

Example 5.3.7

Example 5.3.8

Example 5.3.9

Theorem 5.3.10

Proof

Exercises

5.4 Basis and Dimension

Basis

Definition 5.4.1

Example 5.4.2

Example 5.4.3

Example 5.4.4

Example 5.4.5

Lemma 5.4.6

Proof

Theorem 5.4.7

Proof

Zorn’s Lemma

Definition 5.4.8

Example 5.4.9

Example 5.4.10

Definition 5.4.11

Example 5.4.12

Example 5.4.13

Axiom 5.4.14 [Zorn’s Lemma]

Theorem 5.4.15

Proof

Dimension

Definition 5.4.16

Example 5.4.17

Example 5.4.18

Theorem 5.4.19

Proof

Example 5.4.20

Expansions and Reductions

Theorem 5.4.21

Proof

Theorem 5.4.22

Proof

Example 5.4.23

Theorem 5.4.24

Proof

Corollary 5.4.25

Example 5.4.26

Theorem 5.4.27

Proof

Exercises

5.5 Rank and Nullity

Definition 5.5.1

Rank‐Nullity Theorem

Theorem 5.5.2 [Rank‐Nullity Theorem]

Proof

Example 5.5.3

Corollary 5.5.4

Proof

Example 5.5.5

Example 5.5.6

Fundamental Subspaces

Definition 5.5.7

Theorem 5.5.8

Proof

Rank and Nullity of a Matrix

Definition 5.5.9

Theorem 5.5.10

Definition 5.5.11

Example 5.5.12

Theorem 5.5.13 [Rank‐Nullity Theorem for Matrices]

Proof

Theorem 5.5.14

Corollary 5.5.15

Exercises

5.6 Isomorphism

Definition 5.6.1

Definition 5.6.2

Example 5.6.3

Example 5.6.4

Lemma 5.6.5

Proof

Theorem 5.6.6

Proof

Lemma 5.6.7

Proof

Theorem 5.6.8

Proof

Corollary 5.6.9

Example 5.6.10

Example 5.6.11

Coordinates

Theorem 5.6.12

Proof

Definition 5.6.13

Example 5.6.14

Example 5.6.15

Definition 5.6.16

Example 5.6.17

Theorem 5.6.18

Proof

Corollary 5.6.19

Corollary 5.6.20

Proof

Change of Basis

Theorem 5.6.21

Proof

Theorem 5.6.22

Example 5.6.23

Example 5.6.24

Matrix of a Linear Transformation

Theorem 5.6.25

Proof

Example 5.6.26

Example 5.6.27

Definition 5.6.28

Example 5.6.29

Example 5.6.30

Example 5.6.31

Exercises

CHAPTER 6 Inner Product Spaces. 6.1 Inner Products

Definition 6.1.1

Theorem 6.1.2

Example 6.1.3

Example 6.1.4

Example 6.1.5

Example 6.1.6

Theorem 6.1.7 [Cauchy‐Schwartz Inequality]

Norms

Definition 6.1.8

Definition 6.1.9

Metrics

Definition 6.1.10

Definition 6.1.11

Theorem 6.1.12

Example 6.1.13

Example 6.1.14

Angles

Definition 6.1.15

Example 6.1.16

Definition 6.1.17

Example 6.1.18

Theorem 6.1.19 [Pythagoras]

Proof

Orthogonal Projection

Definition 6.1.20

Theorem 6.1.21

Proof

Example 6.1.22

Example 6.1.23

Exercises

6.2 Orthonormal Bases

Definition 6.2.1

Example 6.2.2

Example 6.2.3

Definition 6.2.4

Example 6.2.5

Theorem 6.2.6

Proof

Corollary 6.2.7

Orthogonal Complement

Definition 6.2.8

Theorem 6.2.9

Proof

Example 6.2.10

Theorem 6.2.11

Example 6.2.12

Example 6.2.13

Direct Sum

Definition 6.2.14

Example 6.2.15

Theorem 6.2.16

Proof

Example 6.2.17

Theorem 6.2.18

Proof

Gram‐Schmidt Process

Definition 6.2.19

Theorem 6.2.20

Proof

Theorem 6.2.21 [Gram‐Schmidt]

Corollary 6.2.22

Corollary 6.2.23

Example 6.2.24

Theorem 6.2.25

Proof

Example 6.2.26

QR Factorization

Theorem 6.2.27 [QR Factorization]

Example 6.2.28

Exercises

CHAPTER 7 Matrix Theory. 7.1 Eigenvectors and Eigenvalues

Definition 7.1.1

Example 7.1.2

Eigenspaces

Definition 7.1.3

Theorem 7.1.4

Proof

Theorem 7.1.5

Example 7.1.6

Characteristic Polynomial

Definition 7.1.7

Example 7.1.8

Example 7.1.9

Theorem 7.1.10

Proof

Example 7.1.11

Example 7.1.12

Theorem 7.1.13

Definition 7.1.14

Example 7.1.15

Cayley–Hamilton Theorem

Theorem [Cayley–Hamilton] 7.1.16

Proof

Exercises

7.2 Minimal Polynomial

Example 7.2.1

Example 7.2.2

Theorem 7.2.3

Proof

Corollary 7.2.4

Theorem 7.2.5

Proof

Invariant Subspaces

Definition 7.2.6

Theorem 7.2.7

Proof

Corollary 7.2.8

Example 7.2.9

Example 7.2.10

Generalized Eigenvectors

Definition 7.2.11

Theorem 7.2.12

Proof

Corollary 7.2.13

Corollary 7.2.14

Primary Decomposition Theorem

Definition 7.2.15

Lemma 7.2.16

Proof

Example 7.2.17

Lemma 7.2.18 [Bézout’s Identity]

Proof

Theorem 7.2.19 [Primary Decomposition Theorem]

Proof

Lemma 7.2.20

Theorem 7.2.21

Example 7.2.22

Example 7.2.23

Exercises

7.3 Similar Matrices

Definition 7.3.1

Theorem 7.3.2

Proof

Theorem 7.3.3

Proof

Corollary 7.3.4

Proof

Schur’s Lemma

Lemma 7.3.5 [Schur]

Proof

Example 7.3.6

Block Diagonal Form

Lemma 7.3.7

Proof

Theorem 7.3.8

Proof

Example 7.3.9

Nilpotent Matrices

Definition 7.3.10

Definition 7.3.11

Lemma 7.3.12

Proof

Example 7.3.13

Jordan Canonical Form

Definition 7.3.14

Definition 7.3.15

Lemma 7.3.16

Proof

Example 7.3.17

Example 7.3.18

Theorem 7.3.19

Proof

Corollary 7.3.20

Example 7.3.21

Exercises

7.4 Diagonalization

Definition 7.4.1

Theorem 7.4.2

Proof

Example 7.4.3

Theorem 7.4.4

Proof

Example 7.4.5

Theorem 7.4.6

Proof

Example 7.4.7

Orthogonal Diagonalization

Theorem 7.4.8

Proof

Definition 7.4.9

Theorem 7.4.10

Proof

Theorem 7.4.11

Proof

Simultaneous Diagonalization

Lemma 7.4.12

Proof

Theorem 7.4.13

Proof

Example 7.4.14

Quadratic Forms

Definition 7.4.15

Theorem 7.4.16 [Principal Axis Theorem]

Proof

Example 7.4.17

Example 7.4.18

Exercises

Further Reading

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Michael L. O’Leary

In addition to the focus on proofs, linear transformations play a central role. For this reason, functions are introduced early, and once the important sets of ℝn are defined in the second chapter, linear transformations are described in the third chapter and motivate the introduction of matrices and their operations. From there, invertible linear transformations and invertible matrices are encountered in the fourth chapter followed by a complete generalization of all previous topics in the fifth with the definition of abstract vector spaces. Geometries are added to the abstractions in the sixth chapter, and the book concludes with nice matrix representations. Therefore, the book’s structure is as follows.

.....

As with any textbook, where the course is taught influences how the book is used. Many universities and colleges have an introduction to proof course. Because such courses serve as a prerequisite for any proof‐intensive mathematics course, the first chapter of this book can be passed over at these institutions and used only as a reference. If there is no such prerequisite, the first chapter serves as a detailed introduction to proof‐writing that is short enough not to infringe too much on the time spent on purely linear algebra topics. Wherever the book finds itself, the course outline can easily be adjusted with any excluded topics serving as bonus reading for the eager student.

Now for some technical comments. Theorems, definitions, and examples are numbered sequentially as a group in the now common chapter.section.number format. Although some proofs find their way into the text, most start with Proof, end with ■, and are indented. Examples, on the other hand, are simply indented. Some equations are numbered as (chapter.number) and are referred to simply using (chapter.number). Most if not all of the mathematical notation should be clear. Itwas decided to represent vectors as columns. This leads to some interesting type‐setting, but the clarity and consistency probably more than makes up for any formatting issues. Vectors are boldface, such as u and v, and scalars are not. Most sums are written like u1 + u2 + ⋯ + uk. There is a similar notation for products. However, there are times when summation and product notation must be used. Therefore, if u1, u2, …, uk are vectors,

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Linear Algebra
Подняться наверх