Generalized Linear Models for Bounded and Limited Quantitative Variables

Generalized Linear Models for Bounded and Limited Quantitative Variables
Автор книги: id книги: 1921788     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 2235,93 руб.     (20,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Социология Правообладатель и/или издательство: Ingram Дата добавления в каталог КнигаЛит: ISBN: 9781544334516 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book introduces researchers and students to the concepts and generalized linear models for analyzing quantitative random variables that have one or more bounds. Examples of bounded variables include the percentage of a population eligible to vote (bounded from 0 to 100), or reaction time in milliseconds (bounded below by 0) . The human sciences deal in many variables that are bounded. Ignoring bounds can result in misestimation and improper statistical inference. Michael Smithson and Yiyun Shou's book brings together material on the analysis of limited and bounded variables that is scattered across the literature in several disciplines, and presents it in a style that is both more accessible and up-to-date. The authors provide worked examples in each chapter using real datasets from a variety of disciplines. The software used for the examples include R, SAS, and Stata. The data, software code, and detailed explanations of the example models are available on an accompanying website.

Оглавление

Michael Smithson. Generalized Linear Models for Bounded and Limited Quantitative Variables

Quantitative Applications in the Social Sciences

GENERALIZED LINEAR MODELS FOR BOUNDED AND LIMITED QUANTITATIVE VARIABLES

CONTENTS

Series Editor’s Introduction

About the Authors

Acknowledgments

Companion Website for this Book

Chapter 1. Introduction and Overview. 1.1 Overview of This Book

1.2 The Nature of Bounds on Variables

1.3 The Generalized Linear Model. 1.3.1 Definitions and Concepts

1.3.2 Estimation

1.3.3 Evaluating and Comparing Models

1.4 Examples

1.4.1 Absolute Bounds Example

1.4.2 Censoring Bounds Example

Chapter 2. Models for Singly Bounded Variables

2.1 GLMs for Singly Bounded Variables. 2.1.1 Alternative Distribution Models

2.1.2 Time Required to Start a Business by Nation

2.1.3 Performance in a Stroop Task Experiment

2.2 Model Diagnostics

2.3 Treatment of Boundary Cases

2.3.1 Ambulance Arrival Times

Chapter 3. Models for Doubly Bounded Variables. 3.1 Doubly Bounded Variables and “Natural” Heteroscedasticity

3.2 The Beta Distribution: Definition and Properties

3.3 Modeling Location and Dispersion. 3.3.1 Location and Dispersion Submodels in the Beta GLM

3.3.2 Example 1: Measuring Speakers’ Grammaticality Judgments

3.3.3 Example 2: Probability Judgment in Moral Dilemmas

3.4 Estimation and Model Diagnostics. 3.4.1 Maximum Likelihood Estimation and Estimator Bias

3.4.2 Model Fit, Comparison, and Effect Sizes

3.4.3 Residuals and Influence Statistics

3.5 Treatment of Cases at the Boundaries. 3.5.1 Rescaling from [0, 1] to (0, 1): Methods and Issues

3.5.2 Hurdle and Boundary-Inflated Models

Chapter 4. Quantile Models for Bounded Variables. 4.1 Introduction

4.2 Quantile Regression

4.2.1 Example: Depressive Symptoms among Chinese University Students

4.3 Distributions for Doubly Bounded Variables with Explicit Quantile Functions

4.3.1 The CDF-Quantile Family

4.4 The CDF-Quantile GLM

4.4.1 Example

4.4.1.1 Example Comparing CDF-Quantile with Beta Regression

4.4.2 Residuals and Influence Measures

4.4.3 Guidelines, Unresolved Problems, and Extensions

Chapter 5. Censored and Truncated Variables

5.1 Types of Censoring and Truncation

5.2 Tobit Models

5.3 Tobit Model Example

5.4 Heteroscedastic and Non-Gaussian Tobit Models

CHAPTER 6. Extensions and Conclusions. 6.1 Extensions and a General Framework

6.2 Absolute Bounds and Censoring

6.3 Multilevel and Multivariate Models

6.4 Bayesian Estimation and Modeling

6.5 Roads Less Traveled and the State of the Art

6.5.1 State of the Art

References

Index

Отрывок из книги

A SAGE PUBLICATIONS SERIES

Los Angeles | London | New Delhi | Singapore | Washington DC | Melbourne

.....

With this book as a foundation, analysts now have every reason to incorporate the boundedness of variables in their analyses. Its timing is propitious. Software resources for analyzing bounded variables, especially doubly-bounded variables, are increasingly available in a variety of packages, including R, SAS, and Stata. This volume provides the guidance needed to design these analyses and interpret the results.

—Barbara Entwisle

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Generalized Linear Models for Bounded and Limited Quantitative Variables
Подняться наверх