Convex Optimization

Convex Optimization
Автор книги: id книги: 1898913     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21812,6 руб.     (212,65$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119804086 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems. Convex Optimization provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.

Оглавление

Mikhail Moklyachuk. Convex Optimization

Table of Contents

List of Illustrations

Guide

Pages

Convex Optimization. Introductory Course

Notations

Introduction

1. Optimization Problems with Differentiable Objective Functions. 1.1. Basic concepts

1.2. Optimization problems with objective functions of one variable

1.3. Optimization problems with objective functions of several variables

1.4. Constrained optimization problems. 1.4.1. Problems with equality constraints

1.4.2. Problems with equality and inequality constraints

1.5. Exercises

2. Convex Sets. 2.1. Convex sets: basic definitions

2.2. Combinations of points and hulls of sets

2.3. Topological properties of convex sets

2.4. Theorems on separation planes and their applications. 2.4.1. Projection of a point onto a set

2.4.2. Separation of two sets

2.5. Systems of linear inequalities and equations

2.6. Extreme points of a convex set

2.7. Exercises

3. Convex Functions. 3.1. Convex functions: basic definitions

3.2. Operations in the class of convex functions

3.3. Criteria of convexity of differentiable functions

3.4. Continuity and differentiability of convex functions

3.5. Convex minimization problem

3.6. Theorem on boundedness of Lebesgue set of a strongly convex function

3.7. Conjugate function

3.8. Basic properties of conjugate functions

3.9. Exercises

4. Generalizations of Convex Functions. 4.1. Quasi-convex functions

4.1.1. Differentiate quasi-convex functions

4.1.2. Operations that preserve quasi-convexity

4.1.3. Representation in the form of a family of convex functions

4.1.4. The maximization problem for quasi-convex functions

4.1.5. Strictly quasi-convex functions

4.1.6. Strongly quasi-convex functions

4.2. Pseudo-convex functions

4.3. Logarithmically convex functions

4.3.1. Properties of logarithmically convex functions

4.3.2. Integration of logarithmically concave functions

4.4. Convexity in relation to order

4.5. Exercises

5. Sub-gradient and Sub-differential of Finite Convex Function

5.1. Concepts of sub-gradient and sub-differential

5.2. Properties of sub-differential of convex function

5.3. Sub-differential mapping

5.4. Calculus rules for sub-differentials

5.5. Systems of convex and linear inequalities

5.6. Exercises

6. Constrained Optimization Problems. 6.1. Differential conditions of optimality

6.2. Sub-differential conditions of optimality

6.3. Exercises

6.4. Constrained optimization problems. 6.4.1. Principle of indeterminate Lagrange multipliers

6.4.2. Differential form of the Kuhn-Tucker theorem

6.4.3. Second-order conditions of optimality

6.5. Exercises

6.6. Dual problems in convex optimization

6.6.1. Kuhn-Tucker vector

6.6.2. Dual optimization problems

6.6.3.Kuhn-Tucker theorem for non-differentiable functions

6.6.4. Method of perturbations

6.6.5. Economic interpretations of the Kuhn-Tucker vector

6.7. Exercises

Solutions, Answers and Hints. Solutions for Chapter 1

Solutions for Chapter 2

Solutions for Chapter 3

References

Index. A

C

D

E

F,H

I, J

K

L

M, N

O,P

Q, R

S

T, V, W, Y, Z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editor Nikolaos Limnios

.....

be not equal to zero. Then there exist numbers ε > 0, δ > 0, K > 0 such that for any y = (y1, … , ys), ∥y∥ ≤ ε we can find x = (x1, … , xs), which satisfies conditions ∥x∥ < δ, , ∥x∥ ≤ K ∥y∥.

PROOF.– We prove the Lagrange theorem by contradiction. Suppose that the stationarity condition

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Convex Optimization
Подняться наверх