An Introduction to the Finite Element Method for Differential Equations

An Introduction to the Finite Element Method for Differential Equations
Автор книги: id книги: 1887830     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 11104 руб.     (108,25$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119671664 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.

Оглавление

Mohammad Asadzadeh. An Introduction to the Finite Element Method for Differential Equations

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

An Introduction to the Finite Element Method for Differential Equations

Preface

Acknowledgments

1 Introduction

1.1 Preliminaries

Example 26.1

1.2 Trinities for Second‐Order PDEs

1.3 PDEs in, Further Classifications

Definition 1.1

Example 1.10

Definition 1.3

1.4 Differential Operators, Superposition

Definition 1.4

1.4.1 Exercises

1.5 Some Equations of Mathematical Physics

1.5.1 The Poisson Equation

1.5.2 The Heat Equation. 1.5.2.1 A Model Problem for the Stationary Heat Equation in

Remark 1.3

1.5.2.2 Fourier's Law of Heat Conduction, Derivation of the Heat Equation

Lemma 1.1

Proof:

1.5.3 The Wave Equation

1.5.3.1 The Vibrating String, Derivation of the Wave Equation in

1.5.4 Exercises

2 Mathematical Tools

2.1 Vector Spaces. Definition 2.1

Definition 2.2

Definition 2.3 (Scalar product)

Definition 2.4

Example 2.1

Definition 2.5 (Orthogonality)

Definition 2.6

Definition 2.7 (The ‐space and the ‐norm)

Example 2.2

Proof:

Remark 2.1

Example 2.3

Proof:

Remark 2.2

2.1.1 Linear Independence, Basis, and Dimension

Definition 2.8

Example 2.4

Definition 2.9

Example 2.5

Remark 2.3

Example 2.6

Example 2.7

Example 2.8

Definition 2.10

Definition 2.11

Example 2.9

Lemma 2.1

Theorem 2.1

Theorem 2.2

Theorem 2.3

Theorem 2.4

2.2 Function Spaces. 2.2.1 Spaces of Differentiable Functions

Definition 2.12

Example 2.10

Definition 2.13

Example 2.11

2.2.2 Spaces of Integrable Functions

Remark 2.4

2.2.3 Weak Derivative

Definition 2.14

Example 2.12

2.2.4 Sobolev Spaces. Definition 2.15

Remark 2.5

2.2.5 Hilbert Spaces

Definition 2.16

Theorem 2.5 (Sobolev embedding theorem)

2.3 Some Basic Inequalities

Definition 2.17

Theorem 2.6 (Minkowski's and Hölder's inequalities)

Theorem 2.7 (Poincaré inequality)

Proof:

Remark 2.6

Theorem 2.8 (Trace theorem)

Lemma 2.2 (Grönwall's lemma)

Proof:

Theorem 2.9 (Sobolev inequality)

2.4 Fundamental Solution of PDEs1

Remark 2.7

Theorem 2.10

2.4.1 Green's Functions

Definition 2.18

Theorem 2.11 (Green's function for Laplace's equation)

2.5 The Weak/Variational Formulation

Lemma 2.3 (Green's formula)

Remark 2.8

Definition 2.19

Definition 2.20

2.6 A Framework for Analytic Solution in 1d

2.6.1 The Variational Formulation in

Theorem 2.12

Proof:

Corollary 2.1

2.6.2 The Minimization Problem in

Theorem 2.13

Proof:

Corollary 2.2

2.6.3 A Mixed Boundary Value Problem in

Theorem 2.14

Proof:

Remark 2.9

2.7 An Abstract Framework. Example 2.13

Definition 2.21

Definition 2.22

Example 2.14

Definition 2.23

Definition 2.24

Theorem 2.15

Definition 2.25

Theorem 2.16

Definition 2.26

Example 2.15

2.7.1 Riesz and Lax–Milgram Theorems

Theorem 2.17

Proof:

Proposition 2.1

Theorem 2.18 (Riesz representation theorem)

Theorem 2.19 (Lax–Milgram theorem)

Remark 2.10

Remark 2.11

Example 2.16

Example 2.17

2.8 Exercises

Note

3 Polynomial Approximation/Interpolation in 1d

3.1 Finite Dimensional Space of Functions on an Interval

3.2 An Ordinary Differential Equation (ODE)

3.2.1 Forward Euler Method to Solve IVP

3.2.2 Variational Formulation for IVP

Definition 3.1

3.2.3 Galerkin Method for IVP

3.3 A Galerkin Method for (BVP)

Remark 3.2

Remark 3.3

3.3.1 An Equivalent Finite Difference Approach

Remark 3.4

Definition 3.2

Proposition 3.1

Proof:

Example 3.2

3.4 Exercises

3.5 Polynomial Interpolation in 1d

Definition 3.3

Example 3.3

Example 3.4 (Linear interpolation on an interval)

Remark 3.5

Question 3.1

Theorem 3.1

Proof:

Remark 3.6

Theorem 3.2

Proof:

Lemma 3.1

Proof:

Definition 3.4

Definition 3.5

Remark 3.7

Theorem 3.3

Proof:

3.5.1 Lagrange Interpolation

Definition 3.6 (Cardinal functions)

Example 3.5

Example 3.6

Example 3.7

Definition 3.7 (Taylor's theorem)

Theorem 3.4

Proof:

Theorem 3.5 (Generalized Rolle's theorem)

3.6 Orthogonal‐ and L2‐Projection

3.6.1 The ‐Projection onto the Space of Polynomials

Definition 3.8

Lemma 3.2

Proof:

3.7 Numerical Integration, Quadrature Rule

3.7.1 Composite Rules for Uniform Partitions

Remark 3.8

Remark 3.9

3.7.2 Gauss Quadrature Rule

Example 3.8

Example 3.9

Example 3.10

Theorem 3.6

Proof:

3.8 Exercises

4 Linear Systems of Equations

4.1 Direct Methods

Remark 4.1

Example 4.1

Remark 4.2

Definition 4.1

Example 4.2

Proposition 4.1

4.1.1 LU Factorization of an Matrix

Example 4.3

Remark 4.3

Theorem 4.1 Cholesky's method

4.2 Iterative Methods

Definition 4.2

4.2.1 Jacobi Iteration

4.2.2 Convergence Criterion

Example 4.4

4.2.3 Gauss–Seidel Iteration

Example 4.5

4.2.4 The Successive Over‐Relaxation Method (S.O.R.)

Remark 4.4

4.2.5 Abstraction of Iterative Methods

4.2.5.1 Questions

4.2.6 Jacobi's Method

Example 4.6

Example 4.7

4.2.7 Gauss–Seidel's Method

4.2.7.1 Relaxation

4.3 Exercises

5 Two‐Point Boundary Value Problems

5.1 The Finite Element Method (FEM)

5.2 Error Estimates in the Energy Norm

Theorem 5.1

Proof:

Theorem 5.2

Proof:

Remark 5.1

Remark 5.2

Theorem 5.3 An a posteriori error estimate

Proof:

Remark 5.3

5.2.1 Adaptivity

5.3 FEM for Convection–Diffusion–Absorption BVPs

Example 5.1

Remark 5.4

Example 5.2

Remark 5.5

Remark 5.6

Example 5.3

5.4 Exercises

Note

6 Scalar Initial Value Problems

6.1 Solution Formula and Stability. Theorem 6.1

Proof:

Theorem 6.2 (Stability estimates)

Proof:

Remark 6.1

6.2 Finite Difference Methods for IVP

Example 6.1

6.3 Galerkin Finite Element Methods for IVP

6.3.1 The Continuous Galerkin Method

Example 6.2

Example 6.3

6.3.1.1 The cG(1) Algorithm

6.3.1.2 The cG() Method

6.3.2 The Discontinuous Galerkin Method

Example 6.4 dG(0)

Remark 6.2

6.4 A Posteriori Error Estimates

6.4.1 A Posteriori Error Estimate for cG(1)

6.4.1.1 The Dual Problem

Theorem 6.3 A posteriori error estimate for cG(1)

Proof:

Theorem 6.4 Convergence order

Proof:

Remark 6.3

6.4.2 A Posteriori Error Estimate for dG(0)

Theorem 6.5

Proof:

6.4.3 Adaptivity for dG(0)

6.4.3.1 An Adaptivity Algorithm

Remark 6.4

6.5 A Priori Error Analysis

6.5.1 A Priori Error Estimates for the dG(0) Method

Lemma 6.1

Proof:

Lemma 6.2

Theorem 6.6

Proof:

Remark 6.5

Proof of Lemma 6.2

6.6 The Parabolic Case (a(t) ≥ 0)

Theorem 6.7

Main steps in the proof

Lemma 6.3

Proof:

Theorem 6.8 The modified a posteriori estimate for dG(0)

6.6.1 An Example of Error Estimate

Example 6.5

Proof:

6.7 Exercises

7 Initial Boundary Value Problems in 1d

7.1 The Heat Equation in 1d

Example 7.1

Remark 7.1

7.1.1 Stability Estimates

Theorem 7.1

Proof:

Theorem 7.2 (Stability of the homogeneous heat equation)

Remark 7.2

Proof:

Remark 7.3

Theorem 7.3 (An energy estimate)

Proof:

Remark 7.4

7.1.2 FEM for the Heat Equation

7.1.3 Error Analysis

Theorem 7.4 (cG(1)cG(1) a posteriori error estimate)

Proof:

Example 7.2 (Error estimates in a simple case for cG(2))

Example 7.3 (The equation of an elastic beam)

7.1.4 Exercises

7.2 The Wave Equation in 1d

Theorem 7.5

Proof:

7.2.1 Wave Equation as a System of Hyperbolic PDEs

7.2.2 The Finite Element Discretization Procedure

7.2.3 Exercises

7.3 Convection–Diffusion Problems

Example 7.4

Remark 7.5

Example 7.5 (The boundary layer)

7.3.1 Finite Element Method

Remark 7.6

7.3.2 The Streamline‐Diffusion Method (SDM)

Remark 7.7

7.3.3 Exercises

8 Approximation in Several Dimensions. 8.1 Introduction

Lemma 8.1 (Green's formula)

Proof:

8.2 Piecewise Linear Approximation in 2d

8.2.1 Basis Functions for the Piecewise Linears in

Definition 8.1

Definition 8.2

Example 8.1

Example 8.2

8.3 Constructing Finite Element Spaces

Definition 8.3

Definition 8.4

Example 8.3

Remark 8.1

8.4 The Interpolant

Definition 8.5

Example 8.4

Lemma 8.2 (The properties of the local interpolation)

Proof:

Definition 8.6

Definition 8.7

Definition 8.8

Example 8.5

8.4.1 Error Estimates for Piecewise Linear Interpolation

Definition 8.9

Proposition 8.1 (Polynomial approximation)

Lemma 8.3 (Bramble–Hilbert lemma)

Proof:

Corollary 8.1

Theorem 8.1

Proof:

Definition 8.10 (Shape‐regularity)

Theorem 8.2 (Local interpolation)

Proof:

Theorem 8.3 (Global interpolation)

Proof:

Theorem 8.4 (Interpolation in )

Proof:

Theorem 8.5

Remark 8.2

8.5 The L2 (Revisited) and Ritz Projections

Definition 8.11

Theorem 8.6

Proof:

Theorem 8.7

Proof:

8.5.1 The Ritz or Elliptic Projection

Definition 8.12

8.6 Exercises

9 The Boundary Value Problems in N

9.1 The Poisson Equation

9.1.1 Weak Stability

9.1.2 Error Estimates for the CG(1) FEM

Theorem 9.1 (cG(1) a priori error estimate for the gradient )

Proof:

Lemma 9.1 (Regularity lemma)

Theorem 9.2 (cG(1) a priori error estimate for the solution )

Proof:

Corollary 9.1 (A priori strong stability estimate)

Theorem 9.3 (cG(1) a posteriori error estimate)

Proof:

Corollary 9.2 (A posteriori strong stability estimate)

9.1.3 Proof of the Regularity Lemma. Proof:

9.2 Stationary Convection–Diffusion Equation

9.2.1 The Elliptic Case

Definition 9.1

9.2.1.1 A Brief Note on Distributions. Definition 9.2

Theorem 9.4 ([76] or [120])

Definition 9.3

Assumptions 9.1

Definition 9.4 (Smoothing property)

Remark 9.1

9.2.2 Error Estimates

Theorem 9.5 (The gradient/‐ estimate)

Proof:

Theorem 9.6 (The error estimate)

Proof:

Theorem 9.7

Proof:

9.3 Hyperbolicity Features

9.3.1 Convection Dominating Case

9.3.2 The SD Method for Convection Diffusion Problem

Proposition 9.6

Proof:

9.3.3 Stability Estimates. Theorem 9.8

Proof:

Remark 9.2

9.3.4 Error Estimates for Convention Dominating in

Proposition 9.7

Proof:

Theorem 9.9

Proof:

Theorem 9.10

Proof:

Remark 9.3

9.4 Exercises

10 The Initial Boundary Value Problems in N

10.1 The Heat Equation in N

10.1.1 The Fundamental Solution

10.1.2 Stability

Theorem 10.1 (Energy estimates)

Proof

10.1.3 The Finite Element for Heat Equation. 10.1.3.1 The Semidiscrete Problem

Theorem 10.2

Proof

Theorem 10.3

Proof

10.1.4 A Fully Discrete Algorithm

10.1.5 The Discrete Equations

10.1.6 A Priori Error Estimate: Fully Discrete Problem

Theorem 10.4

10.2 The Wave Equation in d

Theorem 10.5 (Conservation of energy)

Proof

10.2.1 The Weak Formulation

10.2.2 The Semidiscrete Problem

10.2.2.1 A Priori Error Estimates for the Semidiscrete Problem. Theorem 10.6

Proof

Theorem 10.7

Proof

10.2.3 The Fully Discrete Problem

10.2.3.1 Finite Elements for the Fully Discrete Problem

Remark 10.1

10.2.4 Error Estimate for cG(1) Theorem 10.8 (An a priori error estimate)

Proof

10.3 Exercises

Appendix A Answers to Some Exercises. Chapter 1. Exercise Section 1.4.1

Chapter 1. Exercise Section 1.5.4

Chapter 2. Exercise Section 2.11

Chapter 3. Exercise Section 3.5

Chapter 3. Exercise Section 3.8

Chapter 4. Exercise Section 4.3

Chapter 5. Exercise Section 5.4

Chapter 6. Exercise Section 6.7

Chapter 7. Exercise Section 7.2.3

Chapter 7. Exercise Section 7.3.3

Chapter 9. Poisson Equation. Exercise Section 9.4

Chapter 10. IBVPs: Exercise Section 10.3

Appendind B Algorithms and Matlab Codes

B.1 A Matlab Code to Compute the Mass Matrix M for a Nonuniform Mesh

B.1.1 A Matlab Routine to Compute the Load Vector b

B.2 Matlab Routine to Compute the L2‐Projection

B.2.1 A Matlab Routine for the Composite Midpoint Rule

B.2.2 A Matlab Routine for the Composite Trapezoidal Rule

B.2.3 A Matlab Routine for the Composite Simpson's Rule

B.3 A Matlab Routine Assembling the Stiffness Matrix

B.4 A Matlab Routine to Assemble the Convection Matrix

B.5 Matlab Routine for Forward‐, Backward‐Euler, and Crank–Nicolson

B.6 A Matlab Routine for Mass‐Matrix in 2d

B.7 A Matlab Routine for a Poisson Assembler in 2d

Appendix C Sample Assignments. C.1 Assignment 1

C.2 Assignment 2. C.2.1 Grading Policy of the Assignment

C.2.2 Theory

C.2.3 Selected Applications

C.2.3.1 Convection–Diffusion–Absorption/Reaction

C.2.3.2 Electrostatics

C.2.3.3 Fluid Flow

C.2.3.4 Heat Conduction

C.2.3.5 Quantum Physics

Appendix D Symbols. D.1 Table of Symbols

Bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

M. Asadzadeh

Brenner, S.C. and Scott, L.R. The Mathematical Theory of Finite Element Methods. Springer, ed 3, 2017.

.....

The Poisson equation is a BVP of the form

(1.5.3)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу An Introduction to the Finite Element Method for Differential Equations
Подняться наверх