Global Navigation Satellite Systems, Inertial Navigation, and Integration

Global Navigation Satellite Systems, Inertial Navigation, and Integration
Автор книги: id книги: 1887567     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (127,37$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119547815 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Covers significant changes in GPS/INS technology, and includes new material on GPS, GNSSs including GPS, Glonass, Galileo, BeiDou, QZSS, and IRNSS/NAViC, and MATLAB programs on square root information filtering (SRIF)   This book provides readers with solutions to real-world problems associated with global navigation satellite systems, inertial navigation, and integration. It presents readers with numerous detailed examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. This revised fourth edition adds new material on GPS III and RAIM. It also provides updated information on low cost sensors such as MEMS, as well as GLONASS, Galileo, BeiDou, QZSS, and IRNSS/NAViC, and QZSS. Revisions also include added material on the more numerically stable square-root information filter (SRIF) with MATLAB programs and examples from GNSS system state filters such as ensemble time filter with square-root covariance filter (SRCF) of Bierman and Thornton and SigmaRho filter. Global Navigation Satellite Systems, Inertial Navigation, and Integration, 4th Edition provides: Updates on the significant upgrades in existing GNSS systems, and on other systems currently under advanced development Expanded coverage of basic principles of antenna design, and practical antenna design solutions More information on basic principles of receiver design, and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Examples demonstrating independence of Kalman filtering from probability density functions of error sources beyond their means and covariances New coverage of inertial navigation to cover recent technology developments and the mathematical models and methods used in its implementation Wider coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB implementations, and performance evaluation under simulated dynamic conditions Global Navigation Satellite Systems, Inertial Navigation, and Integration, Fourth Edition is intended for people who need a working knowledge of Global Navigation Satellite Systems (GNSS), Inertial Navigation Systems (INS), and the Kalman filtering models and methods used in their integration.

Оглавление

Mohinder S. Grewal. Global Navigation Satellite Systems, Inertial Navigation, and Integration

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Global Navigation Satellite Systems, Inertial Navigation, and Integration

Copyright

Preface to the Fourth Edition

Acknowledgments

About the Authors

Acronyms

About the Companion Website

1 Introduction

1.1 Navigation

1.1.1 Navigation‐Related Technologies

1.1.2 Navigation Modes

1.2 GNSS Overview

1.2.1 GPS

1.2.1.1 GPS Orbits

1.2.1.2 Legacy GPS Signals

1.2.1.3 Modernization of GPS

1.2.2 Global Orbiting Navigation Satellite System (GLONASS)

1.2.2.1 GLONASS Orbits

1.2.2.2 GLONASS Signals

1.2.2.3 Modernized GLONASS

1.2.3 Galileo

1.2.3.1 Galileo Navigation Services

1.2.3.2 Galileo Signal Characteristics

E5a–E5b Band

E6 Band

L1/E1 Band

1.2.4 BeiDou

1.2.4.1 BeiDou Satellites

1.2.4.2 Frequency

1.2.5 Regional Satellite Systems

1.2.5.1 QZSS

1.2.5.2 NAVIC

1.3 Inertial Navigation Overview

1.3.1 History

1.3.1.1 Theoretical Foundations

1.3.1.2 Development Challenges: Then and Now

1.3.2 Development Results. 1.3.2.1 Inertial Sensors

1.3.2.2 Sensor Attitude Control

1.3.2.3 Initialization

1.3.2.4 Integrating Acceleration and Velocity

1.3.2.5 Accounting for Gravity

1.4 GNSS/INS Integration Overview. 1.4.1 The Role of Kalman Filtering

1.4.2 Implementation

Problems

References

Notes

2 Fundamentals of Satellite Navigation Systems. 2.1 Chapter Focus

2.2 Satellite Navigation Systems Considerations

2.2.1 Systems Other than GNSS

2.2.2 Comparison Criteria

2.3 Satellite Navigation

2.3.1 GNSS Orbits

2.3.2 Navigation Solution (Two‐Dimensional Example)

2.3.2.1 Symmetric Solution Using Two Transmitters on Land

2.3.2.2 Navigation Solution Procedure

2.3.3 User Solution and Dilution of Precision (DOP)

2.3.4 Example Calculation of DOPs. 2.3.4.1 Four Satellites

2.4 Time and GPS. 2.4.1 Coordinated Universal Time (UTC) Generation

2.4.2 GPS System Time

2.4.3 Receiver Computation of UTC

2.5 Example: User Position Calculations with No Errors. 2.5.1 User Position Calculations

2.5.1.1 Position Calculations

2.5.2 User Velocity Calculations

Problems

References

3 Fundamentals of Inertial Navigation

3.1 Chapter Focus

Scope

3.2 Terminology

3.3 Inertial Sensor Technologies. 3.3.1 Gyroscopes

3.3.1.1 Momentum Wheel Gyroscopes (MWGs)

Bearing Technologies

Whole‐angle Gyroscopes

Rate Gyroscopes

Axial Mass Unbalance Torques

3.3.1.2 Coriolis Vibratory Gyroscopes (CVGs) Tuning Fork Gyroscopes

MEMS Tuning Fork Gyroscope

Hemispherical Resonator Gyroscopes

3.3.1.3 Optical Gyroscopes (RLGs and FOGs)

3.3.2 Accelerometers

3.3.2.1 Mass‐spring Designs

3.3.2.2 Pendulous Integrating Gyroscopic Accelerometers (PIGA)

3.3.2.3 Electromagnetic

3.3.2.4 Electrostatic

3.3.3 Sensor Errors. 3.3.3.1 Additive Output Noise

3.3.3.2 Input–output Errors

3.3.3.3 Error Compensation

3.3.4 Inertial Sensor Assembly (ISA) Calibration

3.3.4.1 ISA Calibration Parameters

Compensation

3.3.4.2 Calibration Parameter Drift

Predicting Incipient System or Sensor Failures

3.3.5 Carouseling and Indexing

3.4 Inertial Navigation Models

3.4.1 Geoid Models

3.4.2 Terrestrial Navigation Coordinates

3.4.3 Earth Rotation Model

3.4.4 Gravity Models

3.4.4.1 Gravitational Potential

3.4.4.2 Gravitational Acceleration

3.4.4.3 Equipotential Surfaces

WGS84 Ellipsoid

Geoid Models

3.4.4.4 Longitude and Latitude Rates

Meridional Radius of Curvature

Geodetic Latitude Rate

Transverse Radius of Curvature

Longitude Rate

WGS84 Reference Surface Curvatures

3.4.5 Attitude Models

3.4.5.1 Coordinate Transformation Matrices and Rotation Vectors

3.4.5.2 Attitude Dynamics

3.5 Initializing The Navigation Solution. 3.5.1 Initialization from an Earth‐fixed Stationary State. 3.5.1.1 Accelerometer Recalibration

3.5.1.2 Initializing Position and Velocity

3.5.1.3 Initializing ISA Attitude

3.5.1.4 Gyrocompass Alignment Accuracy

Accuracy

3.5.2 Initialization on the Move. 3.5.2.1 Transfer Alignment

3.5.2.2 Initializing Using GNSS

3.6 Propagating The Navigation Solution. 3.6.1 Attitude Propagation

3.6.1.1 Strapdown Attitude Propagation. Strapdown Attitude Problems

Coning Motion

Rotation Vector Implementation

Bortz Model for Attitude Dynamics

3.6.1.2 Quaternion Implementation

Converting Incremental Rotations to Incremental Quaternions

3.6.1.3 Direction Cosines Implementation

Quaternions to Direction Cosines Matrices

Strapdown with Whole‐angle Gyroscopes

3.6.1.4 MATLAB® Implementations

3.6.1.5 Gimbal Attitude Implementations

Vehicle Attitude Determination

ISA Attitude Control

3.6.2 Position and Velocity Propagation. 3.6.2.1 Vertical Channel Instability

3.6.2.2 Strapdown Navigation Propagation

3.6.2.3 Gimbaled Navigation Propagation

3.7 Testing and Evaluation

3.7.1 Laboratory Testing

3.7.2 Field Testing

3.7.3 Performance Qualification Testing

3.7.3.1 CEP and Nautical Miles

3.7.3.2 Free Inertial Performance

Free Inertial Error Heuristics

CEP Rates

INS Performance Categories

Comparable Sensor Performance Ranges

CEP versus RMS

3.8 Summary

3.8.1 Further Reading

Problems

References

Notes

4 GNSS Signal Structure, Characteristics, and Information Utilization

4.1 Legacy GPS Signal Components, Purposes, and Properties

4.1.1 Signal Models for the Legacy GPS Signals

4.1.2 Navigation Data Format

4.1.2.1 Z‐Count

4.1.2.2 GPS Week Number (WN)

Frame and Subframe Identification

4.1.2.3 Information by Subframe

4.1.3 GPS Satellite Position Calculations

4.1.3.1 Ephemeris Data Reference Time Step and Transit Time Correction

4.1.3.2 True, Eccentric, and Mean Anomaly

4.1.3.3 Kepler's Equation for the Eccentric Anomaly

4.1.3.4 Satellite Time Corrections

4.1.4 C/A‐Code and Its Properties

4.1.4.1 Temporal Structure

4.1.4.2 Autocorrelation Function

4.1.4.3 Power Spectrum

4.1.4.4 Despreading of the Signal Spectrum

4.1.4.5 Role of Despreading in Interference Suppression

4.1.4.6 Cross‐correlation Function

4.1.5 P(Y)‐Code and Its Properties

4.1.5.1 P‐Code Characteristics

4.1.5.2 Y‐Code

4.1.6 L1 and L2 Carriers

4.1.6.1 Dual‐Frequency Operation

4.1.7 Transmitted Power Levels

4.1.8 Free Space and Other Loss Factors

4.1.9 Received Signal Power

4.2 Modernization of GPS

4.2.1 Benefits from GPS Modernization

4.2.2 Elements of the Modernized GPS

4.2.3 L2 Civil Signal (L2C)

4.2.4 L5 Signal

4.2.5 M‐Code

4.2.6 L1C Signal

4.2.7 GPS Satellite Blocks

4.2.8 GPS Ground Control Segment

4.3 GLONASS Signal Structure and Characteristics

4.3.1 Frequency Division Multiple Access (FDMA) Signals

4.3.1.1 Carrier Components

4.3.1.2 Spreading Codes and Modulation

4.3.1.3 Navigation Data Format

4.3.1.4 Satellite Families

4.3.2 CDMA Modernization

4.4 Galileo

4.4.1 Constellation and Levels of Services

4.4.2 Navigation Data and Signals

4.5 BeiDou

4.6 QZSS

4.7 IRNSS/NAVIC

Problems

References

5 GNSS Antenna Design and Analysis. 5.1 Applications

5.2 GNSS Antenna Performance Characteristics

5.2.1 Size and Cost

5.2.2 Frequency and Bandwidth Coverage

5.2.3 Radiation Pattern Characteristics

5.2.4 Antenna Polarization and Axial Ratio

5.2.5 Directivity, Efficiency, and Gain of a GNSS Antenna

5.2.6 Antenna Impedance, Standing Wave Ratio, and Return Loss

5.2.7 Antenna Bandwidth

5.2.8 Antenna Noise Figure

5.3 Computational Electromagnetic Models (CEMs) for GNSS Antenna Design

5.4 GNSS Antenna Technologies. 5.4.1 Dipole‐Based GNSS Antennas

5.4.2 GNSS Patch Antennas

5.4.2.1 Edge‐Fed, LP, Single‐Frequency GNSS Patch Antenna

5.4.2.2 Probe‐Fed, LP, Single‐Frequency GNSS Patch Antenna

5.4.2.3 Dual Probe‐Fed, RHCP, Single‐Frequency GNSS Patch Antenna

5.4.2.4 Single Probe‐Fed, RHCP, Single‐Frequency GNSS Patch Antenna

5.4.2.5 Dual Probe‐Fed, RHCP, Multifrequency GNSS Patch Antenna

5.4.3 Survey‐Grade/Reference GNSS Antennas

5.4.3.1 Choke Ring‐Based GNSS Antennas

5.4.3.2 Advanced Planner‐Based GNSS Antennas

5.5 Principles of Adaptable Phased‐Array Antennas

5.5.1 Digital Beamforming Adaptive Antenna Array Formulations

5.5.2 STAP

5.5.3 SFAP

5.5.4 Configurations of Adaptable Phased‐Array Antennas

5.5.5 Relative Merits of Adaptable Phased‐Array Antennas

5.6 Application Calibration/Compensation Considerations

Problems

References

6 GNSS Receiver Design and Analysis. 6.1 Receiver Design Choices. 6.1.1 Global Navigation Satellite System (GNSS) Application to Be Supported

6.1.2 Single or Multifrequency Support

6.1.2.1 Dual‐Frequency Ionosphere Correction

6.1.2.2 Improved Carrier Phase Ambiguity Resolution in High‐Accuracy Differential Positioning

6.1.3 Number of Channels

6.1.4 Code Selections

6.1.5 Differential Capability

6.1.5.1 Corrections Formats

6.1.6 Aiding Inputs

6.2 Receiver Architecture

6.2.1 Radio Frequency (RF) Front End

6.2.2 Frequency Down‐Conversion and IF Amplification

6.2.2.1 SNR

6.2.3 Analog‐to‐Digital Conversion and Automatic Gain Control

6.2.4 Baseband Signal Processing

6.3 Signal Acquisition and Tracking

6.3.1 Hypothesize About the User Location

6.3.2 Hypothesize About Which GNSS Satellites Are Visible

6.3.3 Signal Doppler Estimation

6.3.4 Search for Signal in Frequency and Code Phase

6.3.4.1 Sequential Searching in Code Delay

6.3.4.2 Sequential Searching in Frequency

6.3.4.3 Frequency Search Strategy

6.3.4.4 Parallel and Hybrid Search Methods

6.3.5 Signal Detection and Confirmation

6.3.5.1 Detection Confirmation

6.3.5.2 Coordination of Frequency Tuning and Code Chipping Rate

6.3.6 Code Tracking Loop

6.3.6.1 Code Loop Bandwidth Considerations

6.3.6.2 Coherent Versus Noncoherent Code Tracking

6.3.7 Carrier Phase Tracking Loops

6.3.7.1 PLL Capture Range

6.3.7.2 PLL Order

6.3.7.3 Use of Frequency‐Lock Loops (FLLs) for Carrier Capture

6.3.8 Bit Synchronization

6.3.9 Data Bit Demodulation

6.4 Extraction of Information for User Solution

6.4.1 Signal Transmission Time Information

6.4.2 Ephemeris Data for Satellite Position and Velocity

6.4.3 Pseudorange Measurements Formulation Using Code Phase

6.4.3.1 Pseudorange Positioning Equations

6.4.4 Measurements Using Carrier Phase

6.4.5 Carrier Doppler Measurement

6.4.6 Integrated Doppler Measurements

6.5 Theoretical Considerations in Pseudorange, Carrier Phase, and Frequency Estimations

6.5.1 Theoretical Error Bounds for Code Phase Measurement

6.5.2 Theoretical Error Bounds for Carrier Phase Measurements

6.5.3 Theoretical Error Bounds for Frequency Measurement

6.6 High‐Sensitivity A‐GPS Systems

6.6.1 How Assisting Data Improves Receiver Performance. 6.6.1.1 Reduction of Frequency Uncertainty

6.6.1.2 Determination of Accurate Time

6.6.1.3 Transmission of Satellite Ephemeris Data

6.6.1.4 Provision of Approximate Client Location

6.6.1.5 Transmission of the Demodulated Navigation Bit Stream

6.6.1.6 Server‐Provided Location

6.6.2 Factors Affecting High‐Sensitivity Receivers

6.6.2.1 Antenna and Low‐Noise RF Design

6.6.2.2 Degradation due to Signal Phase Variations

6.6.2.3 Signal Processing Losses

6.6.2.4 Multipath Fading

6.6.2.5 Susceptibility to Interference and Strong Signals

6.6.2.6 The Problem of Time Synchronization

6.6.2.7 Difficulties in Reliable Sensitivity Assessment

6.7 Software‐Defined Radio (SDR) Approach

6.8 Pseudolite Considerations

Problems

References

7 GNSS Measurement Errors. 7.1 Source of GNSS Measurement Errors

7.2 Ionospheric Propagation Errors

7.2.1 Ionospheric Delay Model

7.2.2 GNSS SBAS Ionospheric Algorithms

7.2.2.1 L1L2 Receiver and Satellite Bias and Ionospheric Delay Estimations for GPS. System Model

Observation Model

UDUT Kalman filter (See Chapter 10)

SM‐to‐Earth‐centered, Earth‐fixed (ECEF) transformation

7.2.2.2 Kalman Filter

7.2.2.3 Selection of Q and R

7.2.2.4 Calculation of Ionospheric Delay Using Pseudoranges

7.3 Tropospheric Propagation Errors

7.4 The Multipath Problem

7.4.1 How Multipath Causes Ranging Errors

7.5 Methods of Multipath Mitigation

7.5.1 Spatial Processing Techniques. 7.5.1.1 Antenna Location Strategy

7.5.1.2 Ground Plane Antennas

7.5.1.3 Directive Antenna Arrays

7.5.1.4 Long‐Term Signal Observation

7.5.2 Time‐Domain Processing

7.5.2.1 Narrow‐Correlator Technology (1990–1993)

7.5.2.2 Leading‐Edge Techniques

7.5.2.3 Correlation Function Shape‐Based Methods

7.5.2.4 Modified Correlator Reference Waveforms

7.5.3 Multipath Mitigation Technology (MMT)

7.5.3.1 Description

7.5.3.2 Maximum‐Likelihood (ML) Multipath Estimation

7.5.3.3 The Two‐Path ML Estimator (MLE)

7.5.3.4 Asymptotic Properties of ML Estimators

7.5.3.5 The MMT Multipath Mitigation Algorithm

7.5.3.6 The MMT Baseband Signal Model

7.5.3.7 Baseband Signal Vectors

7.5.3.8 The Log‐Likelihood Function

7.5.3.9 Secondary‐Path Amplitude Constraint

7.5.3.10 Signal Compression

7.5.3.11 Properties of the Compressed Signal

7.5.3.12 The Compression Theorem

7.5.4 Performance of Time‐Domain Methods. 7.5.4.1 Ranging with the C/A‐Code

7.5.4.2 Carrier Phase Ranging

7.5.4.3 Testing Receiver Multipath Performance

7.6 Theoretical Limits for Multipath Mitigation. 7.6.1 Estimation‐Theoretic Methods

7.6.1.1 Optimality Criteria

7.6.2 Minimum Mean‐Squared Error (MMSE) Estimator

7.6.3 Multipath Modeling Errors

7.7 Ephemeris Data Errors

7.8 Onboard Clock Errors

7.9 Receiver Clock Errors

7.10 Error Budgets

Problems

References

8 Differential GNSS. 8.1 Introduction

8.2 Descriptions of Local‐Area Differential GNSS (LADGNSS), Wide‐Area Differential GNSS (WADGNSS), and Space‐Based Augmentation System (SBAS) 8.2.1 LADGNSS

8.2.2 WADGNSS

8.2.3 SBAS. 8.2.3.1 Wide‐Area Augmentation System (WAAS)

8.2.3.2 European Global Navigation Overlay System (EGNOS)

8.2.3.3 Other SBAS

8.3 GEO with L1L5 Signals

8.3.1 GEO Uplink Subsystem (GUS) Control Loop Overview

8.3.1.1 Ionospheric Kalman Filters

8.3.1.2 Range Kalman Filter

8.3.1.3 Code Control Function

8.3.1.4 Frequency Control Function

8.3.1.5 L1L5 Bias Estimation Function

8.3.1.6 Code‐Carrier Coherence

8.3.1.7 Carrier Frequency Stability

8.4 GUS Clock Steering Algorithm

8.4.1 Receiver Clock Error Determination

8.4.2 Clock Steering Control Law

8.5 GEO Orbit Determination (OD)

8.5.1 OD Covariance Analysis

8.6 Ground‐Based Augmentation System (GBAS) 8.6.1 Local‐Area Augmentation System (LAAS)

8.6.2 Joint Precision Approach and Landing System (ALS)

8.6.3 Enhanced Long‐Range Navigation (eLORAN)

8.7 Measurement/Relative‐Based DGNSS

8.7.1 Code Differential Measurements

8.7.1.1 Single‐Difference Observations

8.7.1.2 Double‐Difference Observations

8.7.2 Carrier Phase Differential Measurements

8.7.2.1 Single‐Difference Observations

8.7.2.2 Double‐Difference Observations

8.7.2.3 Triple‐Difference Observations

8.7.2.4 Combinations of Code and Carrier Phase Observations

8.7.3 Positioning Using Double‐Difference Measurements. 8.7.3.1 Code‐Based Positioning

8.7.3.2 Carrier Phase‐Based Positioning

8.7.3.3 Real‐Time Processing Versus Postprocessing

8.8 GNSS Precise Point Positioning Services and Products

8.8.1 The International GNSS Service (IGS)

8.8.2 Continuously Operating Reference Stations (CORSs)

8.8.3 GPS Inferred Positioning System (GIPSY) and Orbit Analysis Simulation Software (OASIS)

8.8.4 Scripps Coordinate Update Tool (SCOUT)

8.8.5 The Online Positioning User Service (OPUS)

8.8.6 Australia's Online GPS Processing System (AUPOS)

8.8.7 National Resources Canada (NRCan)

Problems

References

9 GNSS and GEO Signal Integrity. 9.1 Introduction

9.1.1 Range Comparison Method

9.1.2 Least‐Squares Method

9.1.3 Parity Method

9.2 SBAS and GBAS Integrity Design

9.2.1 SBAS Error Sources and Integrity Threats

9.2.2 GNSS‐Associated Errors

9.2.2.1 GNSS Clock Error

9.2.2.2 GNSS Ephemeris Error

9.2.2.3 GNSS Code and Carrier Incoherence

9.2.2.4 GNSS Signal Distortion

9.2.2.5 GNSS L1L2 Bias

9.2.2.6 Environment Errors: Ionosphere

9.2.2.7 Environment Errors: Troposphere

9.2.3 GEO‐Associated Errors. 9.2.3.1 GEO Code and Carrier Incoherence

9.2.3.2 GEO‐Associated Environment Errors: Ionosphere

9.2.3.3 GEO‐Associated Environment Errors: Troposphere

9.2.4 Receiver and Measurement Processing Errors

9.2.4.1 Receiver Measurement Error

9.2.4.2 Intercard Bias

9.2.4.3 Multipath

9.2.4.4 L1L2 Bias

9.2.4.5 Receiver Clock Error

9.2.4.6 Measurement Processing Unpack/Pack Corruption

9.2.5 Estimation Errors

9.2.5.1 Reference Time Offset Estimation Error

9.2.5.2 Clock Estimation Error

9.2.5.3 Ephemeris Correction Error

9.2.5.4 L1L2 Wide‐Area Reference Equipment (WRE) and GPS Satellite Bias Estimation Error

9.2.6 Integrity‐Bound Associated Errors

9.2.6.1 Ionospheric Modeling Errors

9.2.6.2 Fringe Area Ephemeris Error

9.2.6.3 Small‐Sigma Errors

9.2.6.4 Missed Message: Old but Active Data (OBAD)

9.2.6.5 Time to Alarm (TTA) Exceeded

9.2.7 GEO Uplink Errors

9.2.7.1 GEO Uplink System Fails to Receive SBAS Message

9.2.8 Mitigation of Integrity Threats

9.2.8.1 Mitigation of GNSS Associated Errors. GNSS Clock Error

GPS Ephemeris Error

GNSS Code and Carrier

GNSS Signal Distortion

GNSS L1L2 Bias

Environment (Ionosphere) Errors

Environment (Troposphere) Errors

9.2.8.2 Mitigation of GEO‐Associated Errors. GEO Code and Carrier and Environment Errors

9.2.8.3 Mitigation of Receiver and Measurement Processing Errors. Receiver Measurement Error

Code Noise and Multipath (CNMP)

WRE L1L2 Bias

WRE Clock Error

9.2.8.4 Mitigation of Estimation Errors. Reference Time Offset Estimation Error

Clock Estimation Error, Ephemeris Correction Error, L1L2 WRE, and GNSS Satellite Bias Estimation Error

9.2.8.5 Mitigation of Integrity‐Bound‐Associated Errors. Ionospheric Modeling Error

Fringe Area Ephemeris Error

Small‐Sigma Errors

Missed Message: OBAD

TTA Exceeded

9.3 SBAS Example

9.4 Summary

9.5 Future: GIC

Problem

References

10 Kalman Filtering

10.1 Chapter Focus

10.2 Frequently Asked Questions

10.3 Notation

10.3.1 Real Vectors and Matrices. 10.3.1.1 Notation

10.3.1.2 Vector and Matrix Properties

10.3.2 Probability Essentials

10.3.2.1 Basic Concepts

10.3.2.2 Linearity of the Expectancy Operator

10.3.2.3 Means and Covariances of Linearly Transformed Variates

10.3.3 Discrete Time Notation. 10.3.3.1 Subscripting

10.3.3.2 A Priori and A Posteriori Values

10.3.3.3 Allowing for Testing and Rejecting Measurements

10.4 Kalman Filter Genesis

10.4.1 Measurement Update (Corrector)

10.4.1.1 Linear Least Mean Squares Estimation: Gauss to Kalman. Least Squares

Gauss–Markov Theorem and Homoscedasticity

Generalization by Aitken

Means and Mean Squared Estimation Error

Covariance of Estimation Error

Recursive Linear Least Mean Squares Estimation

Duncan–Guttman Formula

Kalman Gain Matrix

10.4.1.2 Kalman Measurement Update Equations

10.4.2 Time Update (Predictor)

10.4.2.1 Continuous‐Time Dynamics

Homogeneous and Nonhomogeneus Differential Equations

Example 10.1 ( Order Nonhomogeneous Ordinary Linear Differential Equation)

Homogeneous Equation Solutions

Matrix Exponentials

State Transition Matrices

Nonhomogeneous Solutions

Linear Stochastic Differential Equations

Stochastic Integrals and Markov Processes

10.4.2.2 Discrete‐Time Dynamics

10.4.3 Basic Kalman Filter Equations

10.4.4 The Time‐Invariant Case

10.4.5 Observability and Stability Issues

10.5 Alternative Implementations

10.5.1 Implementation Issues

10.5.2 Conventional Implementation Improvements

10.5.2.1 Measurement Decorrelation by Diagonalization

10.5.2.2 Exploiting Symmetry

10.5.2.3 Information Filter

10.5.2.4 Sigma Rho Filtering

10.5.3 James E. Potter (1937–2005) and Square Root Filtering

10.5.4 Square Root Matrix Manipulation Methods

10.5.4.1 Cholesky Decomposition

10.5.4.2 Modified Cholesky Decomposition

10.5.4.3 Nonuniqueness of Matrix Square Roots

10.5.4.4 Triangularization by QR Decomposition

10.5.4.5 Householder Triangularization

10.5.5 Alternative Square Root Filter Implementations. 10.5.5.1 Potter Implementation

Measurement Update

Time Update

10.5.5.2 Carlson “Fast Triangular” Square Root Filter

10.5.5.3 Bierman–Thornton UD Filter

10.5.5.4 Unscented Square Root Filter

10.5.5.5 Square Root Information Filter (SRIF)

10.6 Nonlinear Approximations

10.6.1 Linear Approximation Errors

Example 10.2 (Nonlinearity of satellite pseudorange measurements)

10.6.2 Adaptive Kalman Filtering

10.6.3 Taylor–Maclauren Series Approximations

10.6.3.1 First‐Order: Extended Kalman Filter

Iterated Extended Kalman Filtering

10.6.3.2 Second‐Order: Bass–Norum–Schwartz Filter

10.6.4 Trajectory Perturbation Modeling

10.6.5 Structured Sampling Methods

10.6.5.1 Sigma‐Point Filters

Sigma‐Point Transform

10.6.5.2 Particle Filters

10.6.5.3 The Unscented Kalman Filter

10.7 Diagnostics and Monitoring. 10.7.1 Covariance Matrix Diagnostics

10.7.1.1 Symmetry Control

10.7.1.2 Eigenanalysis

10.7.1.3 Conditioning

10.7.2 Innovations Monitoring. 10.7.2.1 Kalman Filter Innovations

10.7.2.2 Information‐Weighted Innovations Monitoring

Example 10.3 (Simulated Innovations Monitoring)

10.8 GNSS‐Only Navigation

10.8.1 GNSS Dynamic Models. 10.8.1.1 Receiver Clock Bias Dynamics

10.8.1.2 Discrete Time Models

10.8.1.3 Exponentially Correlated Random Processes

10.8.1.4 Host Vehicle Dynamics for Standalone GNSS Navigation

10.8.1.5 Point Mass Dynamic Models

Velocity Random Walk Models

Exponentially Correlated Velocity Models

Exponentially Correlated Acceleration Models

Models for Bounded RMS Velocity and Acceleration

10.8.2 GNSS Measurement Models. 10.8.2.1 Measurement Event Timing

10.8.2.2 Pseudoranges

10.8.2.3 Time and Distance Correlation

10.8.2.4 Measurement Sensitivity Matrix

10.8.2.5 Noise Model

Example 10.4 (State Vector Example for Standalone GNSS Navigation)

10.9 Summary

Problems

References

Notes

11 Inertial Navigation Error Analysis

11.1 Chapter Focus

11.2 Errors in the Navigation Solution

11.2.1 Navigation Error Variables

11.2.2 Coordinates Used for INS Error Analysis

11.2.3 Model Variables and Parameters

11.2.3.1 INS Orientation Variables and Errors

Misalignments and Tilts

Effect of INS Misalignments

Small‐Angle Rotation Rate Approximation

Effects of Position Errors

11.2.4 Dynamic Coupling Mechanisms. Dynamic coupling

11.3 Navigation Error Dynamics

11.3.1 Error Dynamics Due to Velocity Integration

11.3.2 Error Dynamics Due to Gravity Miscalculations. 11.3.2.1 INS Gravity Modeling

11.3.2.2 Navigation Error Model for Gravity Calculations

11.3.3 Error Dynamics Due to Coriolis Acceleration

11.3.4 Error Dynamics Due to Centrifugal Acceleration

11.3.5 Error Dynamics Due to Earthrate Leveling

11.3.6 Error Dynamics Due to Velocity Leveling

11.3.7 Error Dynamics Due to Acceleration and IMU Alignment Errors

11.3.8 Composite Model from All Effects

11.3.9 Vertical Navigation Instability

11.3.9.1 Altimeter Aiding

Example 11.1 (Three‐state model for altimeter aiding)

Example 11.2 (Ten‐state INS error model for altimeter aiding)

11.3.9.2 Using GNSS for Vertical Channel Stabilization

11.3.10 Schuler Oscillations

11.3.10.1 Schuler Oscillations with Coriolis Coupling

11.3.11 Core Model Validation and Tuning

11.3.11.1 Horizontal Inertial Navigation Model

11.4 Inertial Sensor Noise Propagation

11.4.1 Noise

11.4.2 White Noise

11.4.3 Horizontal CEP Rate Versus Sensor Noise

11.5 Sensor Compensation Errors. Sensor compensation parameters

Parameter drift

11.5.1 Sensor Compensation Error Models

11.5.1.1 Exponentially Correlated Parameter Drift Models

11.5.1.2 Dynamic Coupling into Navigation Errors

11.5.1.3 Augmented Dynamic Coefficient Matrix

11.5.2 Carouseling and Indexing

11.6 Chapter Summary

11.6.1 Further Reading

Problems

References

Notes

12 GNSS/INS Integration

12.1 Chapter Focus

12.2 New Application Opportunities

12.2.1 Integration Advantages. 12.2.1.1 Exploiting Complementary Error Characteristics

12.2.1.2 Cancelling Vulnerabilities

12.2.2 Enabling New Capabilities. 12.2.2.1 Real‐Time Inertial Sensor Error Compensation

12.2.2.2 INS Initialization on the Move

INS Alignment Using GNSS

12.2.2.3 Antenna Switching

12.2.2.4 Antenna‐INS Offsets

12.2.3 Economic Factors. 12.2.3.1 Economies of Scale

Market Size

Manufacturing Technology

12.2.3.2 Implementation Tradeoffs

The Curse of Dimensionality

Sensor Output Rates

Early Implementation Alternatives

Loosely Coupled Implementations

More Tightly Coupled Implementations

Ultra‐tightly Coupled Integration

Limitations

12.3 Integrated Navigation Models. 12.3.1 Common Navigation Models

12.3.2 GNSS Error Models. 12.3.2.1 GNSS Time Synchronization. UTC and GNSS time

12.3.2.2 Receiver Clock Error Model

Model Parameter Values

Cold‐start Initialization

12.3.2.3 Propagation Delay. Dual‐frequency GNSS

Steady‐state Delay Covariance

12.3.2.4 Pseudorange Measurement Noise

12.3.3 INS Error Models. 12.3.3.1 Navigation Error Model

12.3.3.2 Sensor Compensation Errors

12.3.4 GNSS/INS Error Model. 12.3.4.1 State Variables

12.3.4.2 Numbers of State Variables

12.3.4.3 Dynamic Coefficient Matrix

12.3.4.4 Process Noise Covariance

12.3.4.5 Measurement Sensitivities

12.4 Performance Analysis. 12.4.1 The Influence of Trajectories

12.4.2 Performance Metrics. 12.4.2.1 Application‐Dependent Performance Metrics

12.4.2.2 General‐Purpose Metrics

12.4.2.3 Mean Squared Error Metrics

12.4.2.4 Probabilistic Metrics. CEP

Medians of PDFs

12.4.3 Dynamic Simulation Model. 12.4.3.1 State Transition Matrices

12.4.3.2 Dynamic Simulation

12.4.4 Sample Results. 12.4.4.1 Stand‐Alone GNSS Performance. Simulating Satellite Selection

GNSS‐Only MATLAB® Implementation

12.4.4.2 INS‐Only Performance

12.4.4.3 Integrated GNSS/INS Performance

12.5 Summary

Problems

References

Notes

Appendix A Software

A.1 Software Sources

A.2 Software for Chapter 2

A.3 Software for Chapter 3

A.4 Software for Chapter 4

A.5 Software for Chapter 7

A.6 Software for Chapter 10

A.7 Software for Chapter 11

A.8 Software for Chapter 12

A.9 Software for Appendix B

A.10 Software for Appendix C

A.11 GPS Almanac/Ephemeris Data Sources

Appendix B Coordinate Systems and Transformations

B.1 Coordinate Transformation Matrices. B.1.1 Notation

B.1.2 Definitions

B.1.3 Unit Coordinate Vectors

B.1.4 Direction Cosines

B.1.5 Composition of Coordinate Transformations

B.2 Inertial Reference Directions

B.2.1 Earth's Polar Axis and the Equatorial Plane

B.2.2 The Ecliptic and the Vernal Equinox

B.2.3 Earth‐Centered Inertial (ECI) Coordinates

B.3 Application‐dependent Coordinate Systems

B.3.1 Cartesian and Polar Coordinates

B.3.2 Celestial Coordinates

B.3.3 Satellite Orbit Coordinates

B.3.4 Earth‐Centered Inertial (ECI) Coordinates

B.3.5 Earth‐Centered, Earth‐Fixed (ECEF) Coordinates

B.3.5.1 Longitude in ECEF Coordinates

B.3.5.2 Latitudes in ECEF Coordinates

B.3.5.3 Latitude on an Ellipsoidal Earth

B.3.5.4 Parametric Latitude

B.3.5.5 Geodetic Latitude

B.3.5.6 WGS84 Reference Geoid Parameters

B.3.5.7 Geocentric Latitude

B.3.5.8 Geocentric Radius

B.3.6 Ellipsoidal Radius of Curvature

B.3.7 Local Tangent Plane (LTP) Coordinates

B.3.7.1 Alpha Wander Coordinates

B.3.7.2 ENU/NED Coordinates

B.3.7.3 ENU/ECEF Coordinates

B.3.7.4 NED/ECEF Coordinates

B.3.8 Roll–Pitch–Yaw (RPY) Coordinates

B.3.9 Vehicle Attitude Euler Angles

B.3.9.1 RPY/ENU Coordinates

B.3.10 GPS Coordinates

B.4 Coordinate Transformation Models

B.4.1 Euler Angles

B.4.2 Rotation Vectors

B.4.2.1 Rotation Vector to Matrix

B.4.2.2 Matrix to Rotation Vector

B.4.2.3 Special Cases for

B.4.2.4 MATLAB® Implementations

B.4.2.5 Time Derivatives of Rotation Vectors

B.4.2.6 Time Derivatives of Matrix Expressions

General Formulas

Time Derivative of

Time Derivative of

B.4.2.7 Partial Derivatives with Respect to Rotation Vectors

Derivatives of Scalars

Derivatives of Vectors

General Formula

B.4.3 Direction Cosines Matrix

B.4.3.1 Rotating Coordinates

B.4.4 Quaternions

B.4.4.1 Quaternion Matrices

B.4.4.2 Addition and Multiplication

B.4.4.3 Conjugation

B.4.4.4 Representing Rotations

B.5 Newtonian Mechanics in Rotating Coordinates

B.5.1 Rotating Coordinates

B.5.2 Time Derivatives of Matrix Products

B.5.3 Solving for Centrifugal and Coriolis Accelerations

Notes

Appendix C PDF Ambiguity Errors in Nonlinear Kalman Filtering

C.1 Objective

C.2 Methodology

C.2.1 Computing Expected Values

C.2.2 Representative Sample of PDFs

Example C.1 (Verifying PDF‐independence of Eq. (10.20))

C.2.3 Parametric Class of Nonlinear Transformations Used

C.2.4 Ambiguity Errors in Nonlinearly Transformed Means and Variances

C.3 Results. C.3.1 Nonlinearly Transformed Means

C.3.2 Nonlinearly Transformed Variances

C.4 Mitigating Application‐specific Ambiguity Errors

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Mohinder S. Grewal

California State University at Fullerton

.....

where is the semimajor axis of the ellipse, is the semiminor axis, and = ( – / is the eccentricity squared.

The rate of change of geodetic latitude as a function of north velocity is then

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Global Navigation Satellite Systems, Inertial Navigation, and Integration
Подняться наверх