The Mathematics of Fluid Flow Through Porous Media

The Mathematics of Fluid Flow Through Porous Media
Автор книги: id книги: 2078652     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13151,9 руб.     (143,44$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119663874 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Master the techniques necessary to build and use computational models of porous media fluid flow  In  The Mathematics of Fluid Flow Through Porous Media , distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation.  Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis,  The Mathematics of Fluid Flow Through Porous Media  is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations.  Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes:  A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics,  The Mathematics of Fluid Flow Through Porous Media  also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

Оглавление

Myron B. Allen III. The Mathematics of Fluid Flow Through Porous Media

The Mathematics of Fluid Flow Through Porous Media

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Preface

1 Introduction. 1.1 Historical Setting

1.2 Partial Differential Equations (PDEs)

1.3 Dimensions and Units

1.4 Limitations in Scope

2 Mechanics

2.1 Kinematics of Simple Continua

2.1.1 Referential and Spatial Coordinates

2.1.2 Velocity and the Material Derivative

2.2 Balance Laws for Simple Continua

2.2.1 Mass Balance

2.2.2 Momentum Balance

2.3 Constitutive Relationships

2.3.1 Body Force

2.3.2 Stress in Fluids

2.3.3 The Navier–Stokes Equation

2.4 Two Classic Problems in Fluid Mechanics

2.4.1 Hagen–Poiseuille Flow

2.4.2 The Stokes Problem

2.5 Multiconstituent Continua

2.5.1 Constituents

2.5.2 Densities and Volume Fractions

2.5.3 Multiconstituent Mass Balance

2.5.4 Multiconstituent Momentum Balance

3 Single‐fluid Flow Equations

3.1 Darcy's Law

3.1.1 Fluid Momentum Balance

3.1.2 Constitutive Laws for the Fluid

3.1.3 Filtration Velocity

3.1.4 Permeability

3.2 Non‐Darcy Flows

3.2.1 The Brinkman Law

3.2.2 The Forchheimer Equation

3.2.3 The Klinkenberg Effect

3.3 The Single‐fluid Flow Equation

3.3.1 Fluid Compressibility and Storage

3.3.2 Combining Darcy's Law and the Mass Balance

3.4 Potential Form of the Flow Equation

3.4.1 Conditions for the Existence of a Potential

3.4.2 Calculating the Scalar Potential

3.4.3 Piezometric Head

3.4.4 Head‐Based Flow Equation

3.4.5 Auxiliary Conditions for the Flow Equation

3.5 Areal Flow Equation

3.5.1 Vertically Averaged Mass Balance

3.5.2 Vertically Averaged Darcy's Law

3.6 Variational Forms for Steady Flow

3.6.1 Standard Variational Form

3.6.2 Mixed Variational Form

3.7 Flow in Anisotropic Porous Media. 3.7.1 The Permeability Tensor

3.7.2 Matrix Representations of the Permeability Tensor

3.7.3 Isotropy and Homogeneity

3.7.4 Properties of the Permeability Tensor

3.7.5 Is Permeability Symmetric?

4 Single‐fluid Flow Problems

4.1 Steady Areal Flows with Wells

4.1.1 The Dupuit–Thiem Model

4.1.2 Dirac Models

4.1.3 Areal Flow in an Infinite Aquifer with One Well

4.2 The Theis Model for Transient Flows. 4.2.1 Model Formulation

4.2.2 Dimensional Analysis of the Theis Model

4.2.3 The Theis Drawdown Solution

4.2.4 Solving the Theis Model via Similarity Methods

4.3 Boussinesq and Porous Medium Equations

4.3.1 Derivation of the Boussinesq Equation

4.3.2 The Porous Medium Equation

4.3.3 A Model Problem with a Self‐similar Solution

5 Solute Transport

5.1 The Transport Equation

5.1.1 Mass Balance of Miscible Species

5.1.2 Hydrodynamic Dispersion

5.2 One‐Dimensional Advection

5.2.1 Pure Advection and the Method of Characteristics

5.2.2 Auxiliary Conditions for First‐Order PDEs

5.2.3 Weak Solutions

5.3 The Advection–Diffusion Equation

5.3.1 The Moving Plume Problem

5.3.2 The Moving Front Problem

5.4 Transport with Adsorption

5.4.1 Mass Balance for Adsorbate

5.4.2 Linear Isotherms and Retardation

5.4.3 Concave‐down Isotherms and Front Sharpening

5.4.4 The Rankine–Hugoniot Condition

6 Multifluid Flows

6.1 Capillarity. 6.1.1 Physics of Curved Interfaces

6.1.2 Wettability

6.1.3 Capillarity at the Macroscale

6.2 Variably Saturated Flow

6.2.1 Pressure Head and Moisture Content

6.2.2 The Richards Equation

6.2.3 Alternative Forms of the Richards Equation

6.2.4 Wetting Fronts

6.3 Two‐fluid Flows. 6.3.1 The Muskat–Meres Model

6.3.2 Two‐fluid Flow Equations

6.3.3 Classification of Simplified Flow Equations

6.4 The Buckley–Leverett Problem. 6.4.1 The Saturation Equation

6.4.2 Welge Tangent Construction

6.4.3 Conservation Form

6.4.4 Analysis of Oil Recovery

6.5 Viscous Fingering

6.5.1 The Displacement Front and Its Perturbation

6.5.2 Dynamics of the Displacement Front

6.5.3 Stability of the Displacement Front

6.6 Three‐fluid Flows

6.6.1 Flow Equations

6.6.2 Rock‐fluid Properties

6.7 Three‐fluid Fractional Flow Analysis

6.7.1 A Simplified Three‐fluid System

6.7.2 Classification of the Three‐fluid System

6.7.3 Saturation Velocities and Saturation Paths

6.7.4 An Example of Three‐fluid Displacement

7 Flows With Mass Exchange

7.1 General Compositional Equations. 7.1.1 Constituents, Species, and Phases

7.1.2 Mass Balance Equations

7.1.3 Species Flow Equations

7.2 Black‐oil Models

7.2.1 Reservoir and Stock‐tank Conditions

7.2.2 The Black‐oil Equations

7.3 Compositional Flows in Porous Media

7.3.1 A Simplified Compositional Formulation

7.3.2 Conversion to Molar Variables

7.4 Fluid‐phase Thermodynamics

7.4.1 Flash Calculations

7.4.2 Equation‐of‐state Methods

Appendix A Dedicated Symbols

Appendix B Useful Curvilinear Coordinates

B.1 Polar Coordinates

B.2 Cylindrical Coordinates

B.3 Spherical Coordinates

Appendix C The Buckingham Pi Theorem

C.1 Physical Dimensions and Units

C.2 The Buckingham Theorem

Appendix D Surface Integrals

D.1 Definition of a Surface Integral

D.2 The Stokes Theorem

D.3 A Corollary to the Stokes Theorem

Bibliography

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

P

r

s

t

u

v

w

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Myron B. Allen

University of Wyoming

.....

The dimensionless parameter in Eq. (2.16) is the Reynolds number, named after Irish‐born fluid mechanician Osborne Reynolds [128]. This number serves as a unit‐free gauge of the ratio of inertial effects to viscous effects and, heuristically, as an index of mathematical intractability. We associate the regime with slow flows in which viscous effects dominate those associated with inertia. When is much smaller than 1, it is common to neglect the inertial terms.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Mathematics of Fluid Flow Through Porous Media
Подняться наверх