Описание книги
В книге излагаются основы теории нормированных колец и их обобщений и приложения этой теории к анализу, теории приближений функций в комплексной области, теории представлений групп, гармоническому анализу на коммутативной группе и другим вопросам.
Краткое содержание книги.
Глава I - основные сведения из топологии, функционального анализа и теории интегрирования в форме, удобной для использования в остальных частях книги.
Глава II - основные сведения из теории нормированных колец.
Глава III - теория коммутативных нормированных колец.
Глава IV - теория представлений симметричных колец.
Глава V - теория различных классов колец.
Глава VI - групповые кольца, теория унитарных представлений топологических групп.
Глава VII - слабо замкнутые кольца.
Глава VIII - разложение кольца операторов в гильбертовом пространстве на неприводимые кольца и применение к разложению унитарного представления группы на неприводимые представления (написана заново).
Добавление I - частично упорядоченные множества и лемма Цорна. Добавление II - борелевские множества и борелевские функции. Добавление III - аналитические множества. (Добавления II и III написаны специально для понимания главы VIII.) В книгу включены примеры, поясняющие основной текст и указывающие на различные применения теории, а также литературные указания о полученных главным образом в последнее время усилениях излагаемых в основном тексте результатов.
Во втором издании число примеров, литературных указаний, а также библиография существенно увеличены, текст подвергся переработке, для многих результатов написаны новые, более простые доказательства, многие новые результаты добавлены в главах II-VII.
В книге 3 рисунка. Библиография содержит 1118 названий.
3-е издание.