Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Никита Ренарьевич Шахулов. Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику
Абстрактный
1. Введение
2. Справочная информация
2.1. Киберпреступления
2.2. Кибер-криминалистика
3. Связанные работы
4.1. Общий вид структуры DLCF
4.2. Всеохватывающая подробная структура DLCF
5. Заключение и будущая работа
использованная литература
Отрывок из книги
Сегодня мир чаще, чем когда-либо, испытывает рост кибератак во всех сферах нашей повседневной жизни. Эта ситуация превратила борьбу с киберпреступлениями в повседневную борьбу как для отдельных лиц, так и для организаций. Кроме того, эта борьба усугубляется тем фактом, что сегодняшние киберпреступники сделали шаг вперед и могут использовать сложные методы кибератак. Некоторые из этих приемов незначительны и незаметны по своей природе и часто маскируются за фасадом подлинных запросов и команд. Чтобы бороться с этой угрозой, особенно после инцидента, связанного с безопасностью, Специалисты по кибербезопасности, а также судебные следователи всегда вынуждены анализировать большие и сложные пулы данных, также известные как большие данные, в попытке выявить потенциальные цифровые доказательства (PDE), которые можно использовать для поддержки судебных разбирательств. Собранные PDE затем могут быть использованы, чтобы помочь исследователям прийти к определенным выводам и / или решениям. В случае кибер-криминалистики процесс даже усложняется для следователей тем фактом, что большие данные часто поступают из нескольких источников и имеют разные форматы файлов. У судебных следователей часто меньше времени и средств, чтобы справиться с возросшими требованиями, когда дело доходит до анализа таких больших объемов сложных данных для судебно-медицинских целей. Именно по этой причине авторы этой статьи осознали, что глубокое обучение (DL), которое является подмножеством искусственного интеллекта (AI), имеет очень разные варианты использования в области киберпреступности, и даже если многие люди могут возразить, что это не беспрецедентное решение, оно может помочь улучшить борьбу с киберпреступностью. Таким образом, в этом документе предлагается общая структура для разделения методов когнитивных вычислений DL в Cyber Forensics (CF), далее именуемую DLCF Framework. DL использует некоторые методы машинного обучения для решения проблем с помощью нейронных сетей, имитирующих процесс принятия решений человеком. Основываясь на этих основаниях, DL может радикально изменить сферу CF различными способами, а также предоставить решения для судебных следователей. Такие решения могут варьироваться от снижения предвзятости в судебно-медицинских расследованиях до оспаривания того, какие доказательства считаются допустимыми в суде или любом гражданском слушании, и многое другое.
Ключевые слова: киберпреступления, глубокое обучение, искусственный интеллект, расследования, кибератаки, киберпреступления, фреймворк.
.....
В конце концов, это исследование направлено на создание подходящей общей структуры или подхода, с помощью которого концепции и методы когнитивных вычислений DL могут быть интегрированы в Cyber Forensics (CF), чтобы добиться эффективности во время судебной экспертизы с использованием подходов машинного обучения. Таким образом, вклад этой статьи является основой для разделения методов глубокого обучения когнитивных вычислений на кибер-криминалистику.
Напоминание об этом документе структурировано следующим образом: Раздел 2 посвящен предыстории, а Раздел 3 посвящен соответствующей работе по глубокому обучению и кибер-криминалистике. После этого в разделе 4 представлен обзор предлагаемой структуры DLCF. Наконец, статья завершается разделом 5 и упоминает о будущей работе.
.....