Numerical Weather Prediction and Data Assimilation

Numerical Weather Prediction and Data Assimilation
Автор книги: id книги: 1887786     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (156,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119701019 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book has as main aim to be an introductory textbook of applied knowledge in Numerical Weather Prediction (NWP), which is a method of weather forecasting that employs: A set of equations that describe the flow of fluids translated into computer code, combined with parameterizations of other processes, applied on a specific domain and integrated in the basis of initial and domain boundary conditions. Current weather observations serve as input to the numerical computer models through a process called data assimilation to produce atmospheric properties in the future (e.g. temperature, precipitation, and a lot of other meteorological parameters). Various case studies will be also presented and analyzed through this book.

Оглавление

Petros Katsafados. Numerical Weather Prediction and Data Assimilation

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Numerical Weather Prediction and Data Assimilation

Preface

Introduction

1. The Primitive Equations

1.1. Wind forecast equations (conservation of momentum)

1.1.1. Real forces

1.1.2. Apparent forces

1.1.3. Equation of motion

1.2. Continuity equation (conservation of mass)

1.3. Temperature forecast equation (conservation of energy)

1.4. Moisture forecast equation (conservation of water vapor)

1.5. Synopsis of equations

2. Solving Methods in NWP Models

2.1. Decomposition of variables – the perturbation method

Horizontal x-momentum equation

Horizontal y-momentum equation

Vertical z-momentum equation

Continuity equation

Thermodynamic energy equation

Moisture equation

2.1.1. Synoptic scale equations

Horizontal x-momentum equation

Horizontal y-momentum equation

Thermodynamic energy and moisture components

2.1.2. Mesoscale equations

Horizontal x-momentum equation

Horizontal y-momentum equation

Vertical wind component

Nondimensional pressure π

Thermodynamic energy equation

Moisture equation

2.2. Numerical solutions of partial differential equations

2.2.1. Computations by finite difference schemes

2.2.2. Derivation of finite difference representations

2.2.3. Methods for solving the advection–diffusion equation

2.2.3.1. Transient diffusion equation

Explicit schemes. Forward in time/central in space scheme (FTCS)

The Richardson method

Dufort–Frankel method

Implicit schemes. The Laasonen method

The Crank–Nicolson method

General formulation (β-method)

2.2.3.2. Transient convection (advection) equation

Explicit schemes. Euler forward in time and in space (FTFS) approximation

Euler forward in time and central in space (FTCS) approximation

Euler forward in time and backward in space (FTBS) approximations (first-order upwind method)

Lax method

Midpoint leapfrog method

Lax–Wendroff method

MacCormack method

Second-order upwind method

Implicit schemes. Euler implicit method

Leapfrog method

Crank–Nicolson method

2.2.3.3. Nonlinear problems

Forward in time/central in the space scheme (FTCS) method

Lax method

MacCormack method

2.2.3.4. Burgers’ equation

Forward in time/central in space (FTCS) explicit scheme (forward Euler scheme)

FTBCS explicit scheme

Dufort–Frankel explicit scheme

MacCormack explicit scheme

First order in time and second order in space implicit scheme

Crank–Nicolson semi-implicit scheme

Leapfrog scheme

Matsuno scheme

Heun scheme

Adams–Bashforth scheme

2.3. Time splitting

3. Domain Structures and Boundary Conditions

3.1. Horizontal grid structure and resolution

3.2. The vertical coordinate system

3.2.1. Terrain-following coordinate system

Mesoscale variables

Synoptic scale variables

3.3. Boundary conditions

3.3.1. Lateral boundary conditions

3.3.2. Upper (top) boundary conditions

3.3.3. Lower (bottom) boundary conditions

3.3.3.1. Water bodies

3.3.3.2. Land bodies

3.3.3.3. Surface energy balance

Shortwave radiation

Long-wave radiation

The terrain effects on radiation

Vegetation

3.4. Design of a simulation

4. Introduction to Data Assimilation

4.1. Successive correction methods

4.2. Least square method

4.3. Variational approach

4.4. Generalization of the methods

5. Desert Dust Modeling

5.1. Dust uptake mechanisms formulation

5.2. Dust advection and deposition

5.3. Parameterization of the dust feedbacks on climate

6. Simulations of Extreme Weather and Dust Events. 6.1. Case study 1: numerical simulation of a Mediterranean cyclone and its sensitivity on lower boundary conditions

6.1.1. Description of the synoptic conditions

6.1.2. Design of the simulations

6.1.3. Analysis of the numerical simulations

6.2. Case study 2: nowcasting an extreme precipitation event

6.2.1. Synoptic analysis of the event

6.2.2. Nowcasting methodology and results

6.3. Case study 3: seasonal predictability of a large-scale heat wave

6.3.1. Description of the synoptic conditions

6.3.2. Model description and methodology

6.3.3. Predictability assessment

6.4. Numerical study of a severe desert dust storm over Crete

Appendix 1

Appendix 2. A2.1. Turbulent diffusion parameterizations

A2.2. Planetary boundary layer (PBL) parameterization

A2.2.1. Surface layer parameterization

A2.2.2. Viscous sublayer parameterization

A2.2.3. Transition layer parameterization

A2.3. Transforming the vertical coordinate

References

Index. A, B, C

D, E, F

G, H, I

K, L, M

N, O, P

Q, R, S

T, U, V, W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Engineering, Energy and Architecture Set

.....

Volume 6

Petros Katsafados

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Numerical Weather Prediction and Data Assimilation
Подняться наверх