Electromagnetic Waves 2
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Pierre-Noël Favennec. Electromagnetic Waves 2
Table of Contents
List of Illustrations
List of Tabels
Guide
Pages
Electromagnetic Waves 2. Antennas
Preface
References
1. General Information on Antennas
1.1. Definition, context, and regulation1
1.1.1. The International Union of Telecommunications and Radiocommunications (ITU-R)
1.1.2. Frequency bands: uses and classification6 (see also appendices 3 and 5)
1.1.3. Review of some technologies by frequency bands7 (see also appendices 3 and 5)
1.1.3.1. Low and medium frequencies (LF and MF) band
1.1.3.2. High frequency (HF) band
1.1.3.3. Very high frequency (VHF) band
1.1.3.4. Ultra-high frequency (UHF) band
1.1.3.5. Super high frequency (SHF) band
1.1.3.6. Extremely high frequency (EHF) band
1.1.3.7. Terahertz (THz) band
1.2. Propagation and radiation
1.3. Antenna and sensor
1.3.1. Antenna operating in transmission and reception7
1.3.1.1. Transmitting antenna
1.3.1.2. Receiving antenna
1.3.1.3. Choice of adaptation point
1.4. Theorems and important principles of electromagnetism8
1.4.1. Lorentz reciprocity theorem
1.4.2. Huygens-Fresnel principle
1.4.3. Uniqueness theorem
1.4.4. Image theory
1.4.5. Superposition principle
2. Fundamental Equations Used in Antenna Design
2.1. Formulations of Maxwell’s equations to calculate the radiation of electromagnetic sources1
2.1.1. Maxwell’s equations
2.1.2. Material media2
2.1.2.1. Polarization in insulating media
2.1.2.2. Magnetization in a material medium
2.1.3. Vectors and
2.1.3.1. Local Maxwell equations in a material medium
2.1.3.2. Linear, homogeneous and isotropic (LHI) media3
2.1.4. Source currents and induced currents4
Box 2.1.Overview of equations for the development of a simulation code
2.1.5. Integral form of Maxwell’s equation5
2.2. Boundary conditions between two media6
2.3. Vector potential7
2.3.1. Propagation equations for the vector potential
2.3.2. Propagation equations for the scalar potential
2.3.3. Vector and scalar potentials in the harmonic regime8
2.4. Propagation equation for fields and 9
2.5. Solving the Helmholtz equations for the vector and scalar potentials
2.5.1. Orthogonality of distance fields zone and radiated power; radiation pattern10
2.6. Harmonic form of Maxwell’s equations11
2.7. Physical interpretation of the Poynting theorem12. 2.7.1. Poynting vector in the time domain
2.7.2. Poynting vector in the frequency domain13
2.8. Polarized wave14. 2.8.1. Definition of a plane wave
2.8.2. Polarizations of a wave
2.9. Calculating the electromagnetic field radiated by an antenna15. 2.9.1. Expanded discussion of the EFIE and MFIE formulae
2.9.2. Calculations for an elementary dipole
2.10. Aperture antenna16. 2.10.1. Wireless radiation of apertures
2.10.2. Identification of the different zones17
2.10.2.1. Near and far fields
2.10.2.2. Near radiation zone (Rayleigh zone)
2.10.2.3. Intermediary zone (Fresnel zone)
2.10.2.4. Far field (Fraunhofer zone)
3. Different Antenna Technologies
3.1. Horns1
3.2. Coaxial cables and input guides in antennas2
3.2.1. Coaxial cables
3.2.2. Waveguides
3.2.2.1. Rectangular or square guides
3.2.2.2. Circular guides
3.2.2.3. Ridged (corrugated) circular guide and hybrid mode3
3.2.2.4. The concept of characteristic impedance of a waveguide with any straight-edged profile
3.2.2.5. Orthogonality of guided modes
3.2.2.6. Coupling and transfer function4
3.3. Supply to antennas, reference access, impedance matching and balun5. 3.3.1. Supply lines
3.3.2. Reference access
3.3.3. Matching networks
3.3.4. Baluns and symmetrizers
3.4. Reflector antennas6
3.5. Printed antennas7
3.5.1. Low-bandwidth structures
3.5.2. High-bandwidth structures, or frequency-independent structures8
3.6. Reference wire antennas9
3.7. Quality factor and frequency bandwidth10. 3.7.1. Quality factor
3.7.2. Frequency bandwidth
3.8. Miniaturization11
4. Characteristic Parameters of an Antenna
4.1. Characteristic parameters of an antenna1
4.1.1. Capture surfaces or equivalent surfaces on an antenna
4.1.2. Directivity and gain
4.1.3. Relation between gain, directivity and radiation pattern
4.1.4. Effective height or effective length2
4.2. Link budget
4.3. Power and noise temperature3
4.3.1. Noise temperature received by an antenna4
4.3.2. Link budget and Friis formula
4.4. Quality factor Q = G/T
5. Digital Methods
5.1. Introduction to digital methods1. 5.1.1. Overview of the main digital methods
5.1.2. Hybridization of digital methods2
5.1.3. Low-frequency methods. 5.1.3.1. Introduction to the method of moments (MoM)3
5.1.3.1.1. A few of the strengths of the MoM4
5.1.3.1.2. A few of the weaknesses of the MoM
5.1.3.2. Introduction to the Finite Difference Time Domain (FDTD) method5
5.1.3.2.1. The principle of FDTD
5.1.3.2.2. The principle of Yee’s algorithm7
5.1.3.2.3. Discretization of Maxwell’s equations. Spatial discretization
Temporal discretization
Discretized Maxwell’s equations
Choice of spatial and temporal intervals
Case of imperfect, dispersive materials
Truncation of the calculation domain with PMLs (Perfectly Matched Layers)
5.1.3.2.4. A few strengths of the FDTD8
5.1.3.2.5. A few weaknesses of the FDTD
5.1.3.3. Introduction to the finite element method (FEM)9
5.1.3.3.1. Problem of electromagnetics in general11
5.1.3.3.2. Formulation of the problem for antennas
5.1.3.3.3. Finite Element Method in Time Domain (FEMTD)
5.1.3.3.4. A few strengths of the FEM12
5.1.3.3.5. A few weaknesses of the FEM
5.1.3.4. Introduction to the boundary element method (BEM)13
5.1.3.4.1. A few strengths of the BEM
5.1.3.4.2. A few weaknesses of the BEM
5.1.4. Introduction to high-frequency methods14
5.2. General remarks on EMC methods
Appendix 1. Mathematical Formulae1. A1.1. Trigonometric transformation equations
A1.2. Series developments
Appendix 2. Vector Calculations. A2.1. Vectors in coordinate systems. A2.1.1. Cartesian coordinate systems
A2.1.2. Cylindrical coordinate systems
A2.1.3. Spherical coordinate systems
A2.1.4. Laws of orientation in space. A2.1.4.1. Notion of direct trihedron
A2.1.4.2. Orientation of the surface vector
A2.1.5. Solid angle
A2.1.6. Scalar product of two vectors
A2.1.7. Vector product of two vectors
A2.1.8. Field
A2.1.9. Circulation of a vector
A2.1.10. Flux of a vector
A2.2. Vector operators. A2.2.1. Gradient operators
A2.2.1.1. Cartesian coordinates
A2.2.1.2. Cylindrical coordinates
A2.2.1.3. Spherical coordinates
A2.2.2. Divergence operator
A2.2.2.1. Cartesian coordinates
A2.2.2.2. Cylindrical coordinates
A2.2.2.3. Spherical coordinates
A2.2.3. Rotation operator
A2.2.3.1. Cartesian coordinates
A2.2.3.2. Cylindrical coordinates
A2.2.3.3. Spherical coordinates
A2.2.4. Laplacian operator
A2.2.4.1. Cartesian coordinates
A2.2.4.2. Cylindrical coordinates
A2.2.4.3. Spherical coordinates
A2.2.5. Relations in vector algebra
A2.3. Integral transform theorems. A2.3.1. Stokes’ theorem
A2.3.2. Ostrogradsky’s theorem
A2.4. Fundamental relations
Appendix 3. Frequency Spectrum1. A3.1. Introduction
A3.2. The different frequency ranges. A3.2.1. ELF waves (frequency less than 3 kHz)
A3.2.2. VLF waves (3–30 kHz)
A3.2.3. LF waves (30–300 kHz)
A3.2.4. MF waves (300–3,000 kHz)
A3.2.5. HF waves (3–30 MHz)
A3.2.6. VHF waves (30–300 MHz)
A3.2.7. UHF waves (300–3,000 MHz)
A3.2.8. SHF waves (3–30 GHz)
A3.2.9. EH waves (30–300 GHz)
A3.2.10. Sub-EHF waves (300–3,000 GHz)
A3.2.11. Infrared waves (3–430 THz) and light waves (430–860 THz)
Appendix 4. The Decibel. A4.1. Introduction
A4.2. Definition
A4.3. The different variants
A4.4. Decibel operations
A4.5. Correlation table
A4.6. Particular values
Appendix 5. The International Visibility Code
List of Acronyms and Constants. Acronyms
Constants
References
List of Authors
Index. A, C
D, E
F, I
L, M
O, P
S, W
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Waves, Field Directors – Pierre-Noël Favennec, Frédérique de Fornel
.....
Figure P.1. A wave bath envisaged by Michel Urien1
This referenced work, presented in two inseparable volumes, is essential for any student, engineer or researcher wishing to understand electromagnetism and all the technologies derived from it.
.....