Electromagnetic Waves 2

Electromagnetic Waves 2
Автор книги: id книги: 2043786     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16715,1 руб.     (182,12$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818373 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Electromagnetic Waves 2 examines antennas in the field of radio waves. It analyzes the conditions of use and the parameters that are necessary in order to create an effective antenna. This book presents antennas’ definitions, regulations and fundamental equations, and describes the various forms of antennas that can be used in radio: horns, waveguides, coaxial cables, printed and miniature antennas. It presents the characterization methods and the link budgets as well as the digital methods that make the fine calculation of radio antennas possible. Electromagnetic Waves 2 is a collaborative work, completed only with the invaluable contributions of Ibrahima Sakho, Hervé Sizun and JeanPierre Blot, not to mention the editor, Pierre-Noël Favennec. Aimed at students and engineers, this book provides essential theoretical support for the design and deployment of wireless radio and optical communication systems.

Оглавление

Pierre-Noël Favennec. Electromagnetic Waves 2

Table of Contents

List of Illustrations

List of Tabels

Guide

Pages

Electromagnetic Waves 2. Antennas

Preface

References

1. General Information on Antennas

1.1. Definition, context, and regulation1

1.1.1. The International Union of Telecommunications and Radiocommunications (ITU-R)

1.1.2. Frequency bands: uses and classification6 (see also appendices 3 and 5)

1.1.3. Review of some technologies by frequency bands7 (see also appendices 3 and 5)

1.1.3.1. Low and medium frequencies (LF and MF) band

1.1.3.2. High frequency (HF) band

1.1.3.3. Very high frequency (VHF) band

1.1.3.4. Ultra-high frequency (UHF) band

1.1.3.5. Super high frequency (SHF) band

1.1.3.6. Extremely high frequency (EHF) band

1.1.3.7. Terahertz (THz) band

1.2. Propagation and radiation

1.3. Antenna and sensor

1.3.1. Antenna operating in transmission and reception7

1.3.1.1. Transmitting antenna

1.3.1.2. Receiving antenna

1.3.1.3. Choice of adaptation point

1.4. Theorems and important principles of electromagnetism8

1.4.1. Lorentz reciprocity theorem

1.4.2. Huygens-Fresnel principle

1.4.3. Uniqueness theorem

1.4.4. Image theory

1.4.5. Superposition principle

2. Fundamental Equations Used in Antenna Design

2.1. Formulations of Maxwell’s equations to calculate the radiation of electromagnetic sources1

2.1.1. Maxwell’s equations

2.1.2. Material media2

2.1.2.1. Polarization in insulating media

2.1.2.2. Magnetization in a material medium

2.1.3. Vectors and

2.1.3.1. Local Maxwell equations in a material medium

2.1.3.2. Linear, homogeneous and isotropic (LHI) media3

2.1.4. Source currents and induced currents4

Box 2.1.Overview of equations for the development of a simulation code

2.1.5. Integral form of Maxwell’s equation5

2.2. Boundary conditions between two media6

2.3. Vector potential7

2.3.1. Propagation equations for the vector potential

2.3.2. Propagation equations for the scalar potential

2.3.3. Vector and scalar potentials in the harmonic regime8

2.4. Propagation equation for fields and 9

2.5. Solving the Helmholtz equations for the vector and scalar potentials

2.5.1. Orthogonality of distance fields zone and radiated power; radiation pattern10

2.6. Harmonic form of Maxwell’s equations11

2.7. Physical interpretation of the Poynting theorem12. 2.7.1. Poynting vector in the time domain

2.7.2. Poynting vector in the frequency domain13

2.8. Polarized wave14. 2.8.1. Definition of a plane wave

2.8.2. Polarizations of a wave

2.9. Calculating the electromagnetic field radiated by an antenna15. 2.9.1. Expanded discussion of the EFIE and MFIE formulae

2.9.2. Calculations for an elementary dipole

2.10. Aperture antenna16. 2.10.1. Wireless radiation of apertures

2.10.2. Identification of the different zones17

2.10.2.1. Near and far fields

2.10.2.2. Near radiation zone (Rayleigh zone)

2.10.2.3. Intermediary zone (Fresnel zone)

2.10.2.4. Far field (Fraunhofer zone)

3. Different Antenna Technologies

3.1. Horns1

3.2. Coaxial cables and input guides in antennas2

3.2.1. Coaxial cables

3.2.2. Waveguides

3.2.2.1. Rectangular or square guides

3.2.2.2. Circular guides

3.2.2.3. Ridged (corrugated) circular guide and hybrid mode3

3.2.2.4. The concept of characteristic impedance of a waveguide with any straight-edged profile

3.2.2.5. Orthogonality of guided modes

3.2.2.6. Coupling and transfer function4

3.3. Supply to antennas, reference access, impedance matching and balun5. 3.3.1. Supply lines

3.3.2. Reference access

3.3.3. Matching networks

3.3.4. Baluns and symmetrizers

3.4. Reflector antennas6

3.5. Printed antennas7

3.5.1. Low-bandwidth structures

3.5.2. High-bandwidth structures, or frequency-independent structures8

3.6. Reference wire antennas9

3.7. Quality factor and frequency bandwidth10. 3.7.1. Quality factor

3.7.2. Frequency bandwidth

3.8. Miniaturization11

4. Characteristic Parameters of an Antenna

4.1. Characteristic parameters of an antenna1

4.1.1. Capture surfaces or equivalent surfaces on an antenna

4.1.2. Directivity and gain

4.1.3. Relation between gain, directivity and radiation pattern

4.1.4. Effective height or effective length2

4.2. Link budget

4.3. Power and noise temperature3

4.3.1. Noise temperature received by an antenna4

4.3.2. Link budget and Friis formula

4.4. Quality factor Q = G/T

5. Digital Methods

5.1. Introduction to digital methods1. 5.1.1. Overview of the main digital methods

5.1.2. Hybridization of digital methods2

5.1.3. Low-frequency methods. 5.1.3.1. Introduction to the method of moments (MoM)3

5.1.3.1.1. A few of the strengths of the MoM4

5.1.3.1.2. A few of the weaknesses of the MoM

5.1.3.2. Introduction to the Finite Difference Time Domain (FDTD) method5

5.1.3.2.1. The principle of FDTD

5.1.3.2.2. The principle of Yee’s algorithm7

5.1.3.2.3. Discretization of Maxwell’s equations. Spatial discretization

Temporal discretization

Discretized Maxwell’s equations

Choice of spatial and temporal intervals

Case of imperfect, dispersive materials

Truncation of the calculation domain with PMLs (Perfectly Matched Layers)

5.1.3.2.4. A few strengths of the FDTD8

5.1.3.2.5. A few weaknesses of the FDTD

5.1.3.3. Introduction to the finite element method (FEM)9

5.1.3.3.1. Problem of electromagnetics in general11

5.1.3.3.2. Formulation of the problem for antennas

5.1.3.3.3. Finite Element Method in Time Domain (FEMTD)

5.1.3.3.4. A few strengths of the FEM12

5.1.3.3.5. A few weaknesses of the FEM

5.1.3.4. Introduction to the boundary element method (BEM)13

5.1.3.4.1. A few strengths of the BEM

5.1.3.4.2. A few weaknesses of the BEM

5.1.4. Introduction to high-frequency methods14

5.2. General remarks on EMC methods

Appendix 1. Mathematical Formulae1. A1.1. Trigonometric transformation equations

A1.2. Series developments

Appendix 2. Vector Calculations. A2.1. Vectors in coordinate systems. A2.1.1. Cartesian coordinate systems

A2.1.2. Cylindrical coordinate systems

A2.1.3. Spherical coordinate systems

A2.1.4. Laws of orientation in space. A2.1.4.1. Notion of direct trihedron

A2.1.4.2. Orientation of the surface vector

A2.1.5. Solid angle

A2.1.6. Scalar product of two vectors

A2.1.7. Vector product of two vectors

A2.1.8. Field

A2.1.9. Circulation of a vector

A2.1.10. Flux of a vector

A2.2. Vector operators. A2.2.1. Gradient operators

A2.2.1.1. Cartesian coordinates

A2.2.1.2. Cylindrical coordinates

A2.2.1.3. Spherical coordinates

A2.2.2. Divergence operator

A2.2.2.1. Cartesian coordinates

A2.2.2.2. Cylindrical coordinates

A2.2.2.3. Spherical coordinates

A2.2.3. Rotation operator

A2.2.3.1. Cartesian coordinates

A2.2.3.2. Cylindrical coordinates

A2.2.3.3. Spherical coordinates

A2.2.4. Laplacian operator

A2.2.4.1. Cartesian coordinates

A2.2.4.2. Cylindrical coordinates

A2.2.4.3. Spherical coordinates

A2.2.5. Relations in vector algebra

A2.3. Integral transform theorems. A2.3.1. Stokes’ theorem

A2.3.2. Ostrogradsky’s theorem

A2.4. Fundamental relations

Appendix 3. Frequency Spectrum1. A3.1. Introduction

A3.2. The different frequency ranges. A3.2.1. ELF waves (frequency less than 3 kHz)

A3.2.2. VLF waves (3–30 kHz)

A3.2.3. LF waves (30–300 kHz)

A3.2.4. MF waves (300–3,000 kHz)

A3.2.5. HF waves (3–30 MHz)

A3.2.6. VHF waves (30–300 MHz)

A3.2.7. UHF waves (300–3,000 MHz)

A3.2.8. SHF waves (3–30 GHz)

A3.2.9. EH waves (30–300 GHz)

A3.2.10. Sub-EHF waves (300–3,000 GHz)

A3.2.11. Infrared waves (3–430 THz) and light waves (430–860 THz)

Appendix 4. The Decibel. A4.1. Introduction

A4.2. Definition

A4.3. The different variants

A4.4. Decibel operations

A4.5. Correlation table

A4.6. Particular values

Appendix 5. The International Visibility Code

List of Acronyms and Constants. Acronyms

Constants

References

List of Authors

Index. A, C

D, E

F, I

L, M

O, P

S, W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Waves, Field Directors – Pierre-Noël Favennec, Frédérique de Fornel

.....

Figure P.1. A wave bath envisaged by Michel Urien1

This referenced work, presented in two inseparable volumes, is essential for any student, engineer or researcher wishing to understand electromagnetism and all the technologies derived from it.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Electromagnetic Waves 2
Подняться наверх