The Statistical Analysis of Doubly Truncated Data

The Statistical Analysis of Doubly Truncated Data
Авторы книги: id книги: 2201084     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 7658,69 руб.     (75,15$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Медицина Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119500476 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.

Оглавление

Prof Carla Moreira. The Statistical Analysis of Doubly Truncated Data

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES IN PROBABILITY AND STATISTICS

The Statistical Analysis of Doubly Truncated Data: With Applications in R

Preface

List of Abbreviations

Notation

1 Introduction. 1.1 Random Truncation

1.2 One‐sided Truncation. 1.2.1 Left‐truncation

1.2.2 Right‐truncation

1.2.3 Truncation vs. Censoring

1.3 Double Truncation

1.4 Real Data Examples

1.4.1 Childhood Cancer Data

1.4.2 AIDS Blood Transfusion Data

1.4.3 Equipment‐ S Rounded Failure Time Data

1.4.4 Quasar Data

1.4.5 Parkinson's Disease Data

1.4.6 Acute Coronary Syndrome Data

References

2 One‐Sample Problems

2.1 Nonparametric Estimation of a Distribution Function

2.1.1 The NPMLE

2.1.2 Numerical Algorithms for Computing the NPMLE

First Efron–Petrosian algorithm

Second Efron–Petrosian algorithm

Shen's algorithm

2.1.3 Theoretical Properties of the NPMLE

2.1.4 Standard Errors and Confidence Limits

2.2 Semiparametric and Parametric Approaches

2.2.1 Semiparametric Approach

2.2.2 Parametric Approach

2.3 R Code for the Examples

2.3.1 Code for Example 2.1.8

2.3.2 Code for Examples 2.1.11 and 2.1.13

2.3.3 Code for Example 2.1.14

2.3.4 Code for Example 2.1.15

2.3.5 Code for Example 2.1.22

2.3.6 Code for Example 2.2.6

2.3.7 Code for Example 2.2.8

References

3 Smoothing Methods

3.1 Some Background in Kernel Estimation

3.2 Estimating the Density Function

3.3 Asymptotic Properties

3.4 Data‐driven Bandwidth Selection

3.4.1 Normal Reference Bandwidth Selection

3.4.2 Plug‐in Bandwidth Selection

3.4.3 Least‐squares Cross‐validation Bandwidth Selection

3.4.4 Smoothed Bootstrap Bandwidth Selection

3.4.5 Bandwidth Selectors in Practice

3.5 Further Issues in Kernel Density Estimation

3.6 Estimating the Hazard Function

3.7 R Code for the Examples

3.7.1 Code for Example 3.2.1

3.7.2 Code for Examples 3.3.4 and 3.3.5

3.7.3 Code for Examples 3.4.2 and 3.4.3

3.7.4 Code for Example 3.5.1

3.7.5 Code for Example 3.6.4

3.7.6 Code for Example 3.6.5

References

4 Regression Analysis

4.1 Observational Bias in Regression

4.2 Proportional Hazards Regression

4.3 Accelerated Failure Time Regression

4.4 Nonparametric Regression

4.5 R Code for the Examples

4.5.1 Code for Example 4.1.1

4.5.2 Code for Example 4.1.4

4.5.3 Code for Example 4.2.4

4.5.4 Code for Example 4.3.2

4.5.5 Code for Example 4.4.2

References

5 Further Topics

5.1 Two‐Sample Problems

5.2 Competing Risks

5.2.1 Cumulative Incidences

5.2.2 Regression Models for Competing Risks

5.3 Testing for Quasi‐independence

5.4 Dependent Truncation

5.5 R Code for the Examples

5.5.1 Code for Example 5.1.3

5.5.2 Code for Example 5.2.4

5.5.3 Code for Example 5.2.6

5.5.4 Code for Example 5.3.1

5.5.5 Code for Example 5.4.3

References

A Packages and Functions in R

A.1 Computing the NPMLE and Standard Errors

A.2 Assessing the Existence and Uniqueness of the NPMLE

A.3 Semiparametric and Parametric Estimation

A.4 Kernel Estimation

A.5 Regression Analysis

A.6 Competing Risks

A.7 Simulating Data

A.8 Testing Quasi‐independence

A.9 Dependent Truncation

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Established by Walter A. Shewhart and Samuel S. Wilks

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Geof H. Givens, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay

.....

Kalbfleish and Lawless (1989) reported 494 cases of transfusion‐related AIDS, corresponding to individuals diagnosed prior to 1 July 1986 (). The variable of ultimate interest is the induction or incubation time, which is the time elapsed from HIV infection to AIDS. Importantly, HIV was unknown before 1982 (); this implies that cases developing AIDS prior to this date were not reported. Let denote the time from HIV infection to 1 July 1986 (in months), and introduce ; then, due to the interval sampling, only triplets satisfying were observed (Bilker and Wang, 1996). We restrict our analysis to the cases with consistent data, for which the infection could be attributed to a single transfusion or a short series of transfusions. This dataset is fully reported in Kalbfleish and Lawless (1989), p. 361.

The observed values of range from 0.5 to 89 (months), while ranges from to 45.5. This suggests that the lower limit of the support of is about , while the upper limit of the support of is about 99.5. As discussed in Chapter 2, in such a case the distribution of the incubation time is identifiable on the interval (months). The AIDS Blood Transfusion Data also includes information on the age of the individual at infection; see Table 1.2.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Statistical Analysis of Doubly Truncated Data
Подняться наверх