Machine Learning for Tomographic Imaging

Machine Learning for Tomographic Imaging
Автор книги: id книги: 1549706     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 10616,9 руб.     (104,17$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Медицина Правообладатель и/или издательство: Ingram Дата добавления в каталог КнигаЛит: ISBN: 9780750322164 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The area of machine learning, especially deep learning, has exploded in recent years, producing advances in everything from speech recognition and gaming to drug discovery. Tomographic imaging is another major area that is being transformed by machine learning, and its potential to revolutionise medical imaging is significant. Written by active researchers in the field,  Machine Learning for Tomographic Imaging  presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. X-ray CT and MRI reconstruction methods are covered in detail, and other medical imaging applications are discussed. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical fields who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included.

Оглавление

Professor Ge Wang. Machine Learning for Tomographic Imaging

Contents

Editorial Advisory Board Members

Foreword

Preface

Acknowledgments

Author biographies

Introduction

0.1 Artificial intelligence/machine learning/deep learning

0.2 Image analysis versus image reconstruction

0.3 Analytic/iterative/deep learning algorithms for tomographic reconstruction

0.4 The field of deep reconstruction and the need for this book

0.5 The organization of this book

0.6 More to learn and what to expect next

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 1. Background knowledge. 1.1 Imaging principles and a priori information. 1.1.1 Overview

1.1.2 Radon transform and non-ideality in data acquisition

1.1.3 Bayesian reconstruction

1.1.4 The human vision system

1.1.5 Data decorrelation and whitening

1.1.6 Sparse coding

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 2. Tomographic reconstruction based on a learned dictionary. 2.1 Prior information guided reconstruction

2.2 Single-layer neural network

2.2.1 Matching pursuit algorithm

2.2.2 The K-SVD algorithm

2.3 CT reconstruction via dictionary learning

2.3.1 Statistic iterative reconstruction framework (SIR)

2.3.2 Dictionary-based low-dose CT reconstruction

2.3.2.1 Methodology

2.3.2.2 Experimental results

2.4 Final remarks

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 3. Artificial neural networks. 3.1 Basic concepts

3.1.1 Biological neural network

3.1.2 Neuron models

3.1.3 Activation function

Sigmoid

Tanh

ReLU

Leaky ReLU

ELU

3.1.4 Discrete convolution and weights

A special convolution: 1 × 1 convolution

Transposed convolution

3.1.5 Pooling strategy

3.1.6 Loss function

Mean squared error/L2

Mean absolute error/L1

Mean absolute percentage error

Cross entropy

Poisson

Cosine proximity

3.1.7 Backpropagation algorithm

3.1.8 Convolutional neural network

History

Architecture

Distinguishing features

A CNN example: LeNet-5

3.2 Training, validation, and testing of an artificial neural network

3.2.1 Training, validation, and testing datasets

3.2.2 Training, validation, and testing processes

3.2.3 Related concepts

Gradient management

Overfitting

Batch normalization

Dropout

Early stopping

Pruning

Data argumentation

3.3 Typical artificial neural networks

Auto-encoder

‘Bottleneck’ architecture

Some details of the auto-encoder

Typical auto-encoders

3.3.1 VGG network

VGG architecture

Key points of the VGG

3.3.2 U-Net

U-Net architecture

Some details of U-Net

Key points of U-Net

Variants of U-Net

3.3.3 ResNet

Degradation of deep networks

Residual learning

ResNet architecture

Variants and interpretation of ResNet

3.3.4 GANs

Discriminative versus generative models

GAN principle

Variants of GAN

3.3.5 RNNs

What is RNNs?

How to train RNNs?

RNN extensions

3.3.6 GCNs*

The fundamentals of GCNs

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 4. X-ray computed tomography

4.1 X-ray data acquisition. 4.1.1 Projection

4.1.2 Backprojection

4.1.3 (Back)Projector

4.2 Analytical reconstruction. 4.2.1 Fourier transform

4.2.2 Central slice theorem

4.2.3 Parallel-beam image reconstruction

4.2.4 Fan-beam image reconstruction

4.2.5 Cone-beam image reconstruction∗

4.3 Iterative reconstruction. 4.3.1 Linear equations

4.3.2 Algebraic iterative reconstruction

4.3.3 Statistical iterative reconstruction

4.3.4 Regularized iterative reconstruction∗

4.3.5 Model-based iterative reconstruction

4.4 CT scanner. 4.4.1 CT scanning modes

4.4.2 Detector technology

4.4.3 The latest progress in CT technology. 4.4.3.1 Interior tomography

4.4.3.2 Multi-spectral CT

4.4.4 Practical applications. 4.4.4.1 Medical applications

4.4.4.2 Industrial applications

4.4.4.3 Other applications

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 5. Deep CT reconstruction. 5.1 Introduction

5.2 Image domain processing

5.2.1 RED-CNN

5.2.2 AAPM-Net

5.2.3 WGAN-VGG

5.3 Data domain and hybrid processing

5.4 Iterative reconstruction combined with deep learning

5.4.1 LEARN

5.4.2 3pADMM

5.4.3 Learned primal–dual reconstruction

5.5 Direct reconstruction via deep learning

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 6. Classical methods for MRI reconstruction

6.1 The basic physics of MRI

6.2 Fast sampling and image reconstruction

6.2.1 Compressed sensing MRI

6.2.2 Total variation regularization

6.2.3 ADMM and primal–dual

6.3 Parallel MRI*

6.3.1 GRAPPA

6.3.2 SENSE

6.3.3 TV regularized pMRI reconstruction

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 7. Deep-learning-based MRI reconstruction

7.1 Structured deep MRI reconstruction networks

7.1.1 ISTA-Net

7.1.2 ADMM-Net

7.1.3 Variational reconstruction network

7.2 Leveraging generic network structures. 7.2.1 Cascaded CNNs

7.2.2 GAN-based reconstruction networks

7.3 Methods for advanced MRI technologies. 7.3.1 Dynamic MRI

7.3.2 MR fingerprinting

7.3.3 Synergized pulsing-imaging network

7.4 Miscellaneous topics* 7.4.1 Optimization with complex variables and Wirtinger calculus

7.4.2 Activation functions with complex variables

7.4.3 Optimal k-space sampling

7.5 Further readings

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 8. Modalities and integration

8.1 Nuclear emission tomography

8.1.1 Emission data models

8.1.2 Network-based emission tomography

8.2 Ultrasound imaging

8.2.1 Ultrasound scans

8.2.2 Network-based ultrasound imaging

8.3 Optical imaging

8.3.1 Interferometric and diffusive imaging

8.3.2 Network-based optical imaging

8.4 Integrated imaging

8.5 Final remarks

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 9. Image quality assessment

9.1 General measures

9.1.1 Classical distances

9.1.2 Structural similarity

9.1.3 Information measures

9.2 System-specific indices

9.3 Task-specific performance

9.4 Network-based observers*

9.5 Final remarks*

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye and Xuanqin Mou. Chapter 10. Quantum computing*

10.1 Wave–particle duality

10.2 Quantum gates

10.3 Quantum algorithms

10.4 Quantum machine learning

10.5 Final remarks

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye, Xuanqin Mou. Appendix A. Math and statistics basics. A.1 Numerical optimization. A.1.1 Basics in optimization

A.1.2 Unconstrained optimization algorithms

A.1.3 Stochastic gradient descent methods

A.1.4 Theory of constrained optimization

A.2 Statistical inferences

A.3 Information theory

A.3.1 Entropy

A.3.2 Mutual information

A.3.3 Kullback–Leibler divergence

References

IOP Publishing. Machine Learning for Tomographic Imaging. Ge Wang, Yi Zhang, Xiaojing Ye, Xuanqin Mou. Appendix B. Hands-on networks. B.1 Open source toolkits for deep learning

B.2 Datasets for deep learning. B.2.1 Datasets of natural images

B.2.2 Datasets of medical images

B.3 Network models for deep reconstruction

References

Отрывок из книги

Machine Learning for

Tomographic Imaging

.....

5.2.1 RED-CNN

5.2.2 AAPM-Net

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Machine Learning for Tomographic Imaging
Подняться наверх