Описание книги
Учебное пособие содержит алгебраическую основу и ее применение в теории кодирования. Сначала приводятся основные сведения по таким ал- гебраическим структурам, как группы, кольца, кольца многочленов, кольца матриц, системы линейных алгебраических уравнений, векторные про- странства, пространства линейных операторов, билинейные и квадратич- ные формы, поля, конечные поля. Далее излагаются базовые разделы ал- гебраической теории кодирования: линейные коды, циклические коды, коды Боуза-Чоудхури-Хоквингема, коды Рида-Соломона, обобщенные коды Рида-Соломона, альтернативные коды, коды Гоппы, кодовые криптосистемы Мак-Элиса и Нидеррайтера. Особое внимание уделено алгоритмам де- кодирования, которые математически обосновываются и сопровождаются численными примерами. Также рассматриваются оптимальные алфавитные коды.
Книга ориентирована на преподавателей, аспирантов, студентов математических специальностей, студентов специальностей по информационной безопасности.