Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design
Автор книги: id книги: 2117428     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21733,5 руб.     (201,22$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119725046 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Оглавление

Rajender Boddula. Fundamentals of Solar Cell Design

Table of Contents

Guide

List of Illustrations

List of Tables

Pages

Fundamentals of Solar Cell Design

Preface

1. Organic Solar Cells

1.1 Introduction

1.2 Classification of Solar Cells

1.3 Solar Cell Structure

1.4 Photovoltaic Parameters or Terminology Used in BHJOSCs. 1.4.1 Open-Circuit Voltage Voc

1.4.2 Short-Circuit Current Jsc

1.4.3 Incident-Photon-to-Current Efficiency (IPCE)

1.4.4 Power Conversion Efficiency ηp (PCE)

1.4.5 Fill Factor (FF)

1.5 Some Basic Design Principles/Thumb Rules Associated With Organic Materials Required for BHJOSCs

1.6 Recent Research Advances in Small-Molecule Acceptor and Polymer Donor Types

1.7 Recent Research Advances in All Small-Molecule Acceptor and Donor Types

1.8 Conclusion

Acknowledgement

References

2. Plasmonic Solar Cells

2.1 Introduction

2.1.1 Plasmonic Nanostructure

2.1.2 Classification of Plasmonic Nanostructures

2.2 Principles and Working Mechanism of Plasmonic Solar Cells. 2.2.1 Working Principle

2.2.2 Mechanism of Plasmonic Solar Cells

2.3 Important Optical Properties

2.3.1 Trapping of Light

2.3.2 Scattering and Absorption of Sunlight

2.3.3 Multiple Energy Levels

2.4 Advancements in Plasmonic Solar Cells

2.4.1 Direct Plasmonic Solar Cells

2.4.2 Plasmonic-Enhanced Solar Cell

2.4.3 Plasmonic Thin Film Solar Cells

2.4.4 Plasmonic Dye Sensitized Solar Cells (PDSSCs)

2.4.5 Plasmonic Photoelectrochemical Cells

2.4.6 Plasmonic Quantum Dot (QD) Solar Cells

2.4.7 Plasmonic Perovskite Solar Cells

2.4.8 Plasmonic Hybrid Solar Cells

2.5 Conclusion and Future Aspects

Acknowledgements

References

3. Tandem Solar Cell

List of Abbreviations

3.1 Introduction

3.2 Review of Organic Tandem Solar Cell

3.3 Review of Inorganic Tandem Solar Cell

3.4 Conclusion

References

4. Thin-Film Solar Cells

4.1 Introduction

4.2 Why Thin-Film Solar Cells?

4.3 Amorphous Silicon

4.4 Cadmium Telluride

4.5 Copper Indium Diselenide Solar Cells

4.6 Comparison Between Flexible a-Si:H, CdTe, and CIGS Cells and Applications

4.7 Conclusion

References

5. Biohybrid Solar Cells

Abbreviations

5.1 Introduction

5.2 Photovoltaics

5.3 Solar Cells

5.3.1 First-Generation

5.3.2 Second-Generation

5.3.3 Third-Generation

5.3.4 Fourth-Generation

5.4 Biohybrid Solar Cells

5.5 Role of Photosynthesis

5.6 Plant-Based Biohybrid Devices

5.6.1 PS I–Based Biohybrid Devices

5.6.2 PS II–Based Biohybrid Devices

5.7 Dye-Sensitized Solar Cells

5.8 Polymer and Semiconductors-Based Biohybrid Solar Cells

5.9 Conclusion

References

6. Dye-Sensitized Solar Cells

6.1 Introduction

6.2 Cell Architecture and Working Mechanism

6.3 Fabrication of Simple DSSC in Lab Scale

6.4 Electrodes

6.5 Counter Electrode

6.6 Blocking Layer

6.7 Electrolytes Used

6.7.1 Liquid-Based Electrolytes

6.7.1.1. Electrical Additives

6.7.1.2. Organic Solvents

6.7.1.3. Ionic Liquids

6.7.1.4. Iodide/Triiodide-Free Mediator and Redox Couples

6.7.2 Quasi-Solid-State Electrolytes

6.7.2.1. Thermoplastic-Based Polymer Electrolytes

6.7.2.2. Thermosetting Polymer Electrolytes

6.7.3 Solid-State Transport Materials

6.7.3.1. Inorganic Hole Transport Materials

6.7.3.2. Organic Hole Transport Materials

6.7.3.3. Solid-State Ionic Conductors

6.8 Commonly Used Natural Dyes in DSSC. 6.8.1 Chlorophyll

6.8.2 Flavonoids

6.8.3 Anthocyanins

6.8.4 Carotenoids

6.9 Calculations. 6.9.1 Power Conversion Efficiency

6.9.2 Fill Factor

6.9.3 Open-Circuit Voltage

6.9.4 Short Circuit Current

6.9.5 Determination of Energy Gap of Electrode Material Adsorbed With Natural Dye

6.9.6 Absorption Coefficient

6.9.7 Dye Adsorption

6.10 Conclusion

References

7. Characterization and Theoretical Modeling of Solar Cells

7.1 Introduction

7.2 Classification of SC

7.2.1 Inorganic Solar Cells

7.2.2 Organic Solar Cell

7.3 Working Principle of DSSC

7.4 Operation Principle of DSSC

7.5 Photovoltaic Parameters

7.6 Theoretical and Computational Methods

7.6.1 Density Functional Theory (DFT)

7.6.2 Basis Sets

7.6.3 TDDFT Method

7.6.4 Molecular Descriptors

7.6.5 Force Field Parameterization for MD Simulations

7.6.6 Excited States

7.6.7 UV-Vis Spectroscopy

7.6.8 Charge Transfer and Carrier Transport

7.6.9 Coarse-Grained (CG) Simulations

7.6.10 Kinetic Monte Carlo (KMC) Modeling

7.6.11 Car-Parrinello Method

7.6.12 Solvent Effects

7.6.13 Global Reactivity Descriptors

7.7 Conclusion

References

8. Efficient Performance Parameters for Solar Cells

8.1 Introduction

8.1.1 Potential, Production, and Climate of Ankara

8.2 Solar Radiation Intensity Calculation. 8.2.1 Horizontal Superficies. 8.2.1.1. On a Daily Basis Total Sun Irradiation

8.2.1.2. Daily Diffuse Sun Irradiation

8.2.1.3. Momentary Total Sun Irradiation

8.2.1.4. Direct and Diffuse Sun Radiation

8.2.2 On Inclined Superficies, Computing Sun Irradiation Intensity. 8.2.2.1. Direct Momentary Sun Radiation

8.2.2.2. Diffuse Sun Radiation

8.2.2.3. Momentary Reflecting Radiation

8.2.2.4. Total Sun Radiation

8.3 Methodology. 8.3.1 The Solar Radiation Assessments by Correlation Models With MATLAB Simulation Software

8.3.2 MATLAB Simulation Results and Findings

8.3.3 For Ankara Province, the Determinants of the Most Efficiency Solar Cell With AHP Methodology

8.4 Conclusions

References

9. Practices to Enhance Conversion Efficiencies in Solar Cell

9.1 Introduction

9.2 Basics on Conversion Efficiency

9.3 Approaches for Improving Conversion Efficiencies in Solar Cells

9.4 Conclusion

Acknowledgements

References

10. Solar Cell Efficiency Energy Materials

10.1 Introduction

10.2 Solar Cell Efficiency

10.3 Historical Development of Solar Cell Materials

10.4 Solar Cell Materials and Efficiencies

10.4.1 Crystalline Silicon

10.4.2 Silicon Thin-Film Alloys

10.4.3 III-V Semiconductors

10.4.4 Chalcogenide

10.4.4.1 Chalcopyrites

10.4.4.2 Cadmium Telluride (CdTe)

10.4.5 Organic Materials

10.4.6 Hybrid Organic-Inorganic Materials

10.4.6.1 Dye-Sensitized Solar Cell Materials

10.4.6.2 Perovskites

10.4.7 Quantum Dots

10.5 Conclusion and Prospects

References

11. Analytical Tools for Solar Cell

11.1 Introduction

11.2 Transient Absorption Spectroscopy

11.2.1 Application of Transient Absorption Spectroscopy in Solar Cells

11.3 Electron Tomography

11.3.1 Application of Electron Tomography (ET) in Solar Cells

11.4 Conductive Atomic Force Microscopy (C-AFM)

11.4.1 Application of C-AFM in Solar Cells

11.5 Kelvin Probe Force Microscopy

11.5.1 Application of Scanning Kelvin Probe Force Microscopy for Solar Cells

11.6 Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy

11.6.1 Application of Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy in Solar Cell

11.7 Conclusion

References

12. Applications of Solar Cells

12.1 Introduction

12.2 An Overview on Photovoltaic Cell. 12.2.1 History

12.2.2 Working Principle of Solar Cell

12.2.3 First-Generation Photovoltaic Cells: Crystalline Silicon Form

12.2.4 Second-Generation Photovoltaic Cells: Thin-Film Solar Cells

12.2.5 Third-Generation Photovoltaic Cells

12.3 Applications of Solar Cells. 12.3.1 Perovskite Solar Cell

12.3.2 Dye-Sensitized Solar Cell

12.3.3 Nanostructured Inorganic-Organic Heterojunction Solar Cells (NSIOHSCs)

12.3.4 Polymer Solar Cells

12.3.5 Quantum Dot Solar Cell (QDCs)

12.3.6 Organic Solar Cells

12.4 Conclusion and Summary

References

13. Challenges of Stability in Perovskite Solar Cells

13.1 Introduction

13.2 Degradation Phenomena and Stability Measures in Perovskite

13.2.1 Thermal Stability

13.2.2 Structural and Chemical Stability

13.2.3 Oxygen and Moisture

13.2.4 Visible and UV Light Exposure

13.3 Stability-Interface Interplay

13.3.1 Chemical Reaction at the Interface

13.3.2 Degradation on the Top Electrode

13.3.3 Hysteresis Phenomenon in PSC Devices

13.4 Effect of Selective Contacts on Stability. 13.4.1 Electron-Transport Layers

13.4.2 Hole Transport Layers

13.5 Conclusion

References

14. State-of-the-Art and Prospective of Solar Cells

Acronyms

14.1 Introduction

14.2 State-of-the-Art of Solar Cells

14.2.1 Production Volume

14.2.2 Cost Breakdown

14.2.3 Main Technologies

14.2.3.1. Si Solar Cell Arrays

14.2.3.2. DSSCs

14.2.3.3. Photoanodes

14.2.3.4. C/Si Heterojunctions

14.2.3.5. a-C/Si Heterojunctions

14.2.3.6. Non-Fullerene Acceptor Bulk Heterojunctions

14.2.3.7. a-Si

14.2.3.8. Perovskites

14.2.3.9. Metal-Halide–Based Perovskites

14.2.3.10. Sn-Based Perovskites

14.2.3.11. Heavily Doped Solar Cells

14.2.3.12. PV Building Substrates

14.2.3.13. Solar Tracking System

14.2.3.14. Solar Concentrators

14.2.3.15. Solar Power Satellite

14.2.3.16. Roof-Top Solar PV System

14.2.3.17. Short-Wavelength Solar-Blind Detectors

14.2.3.18. GCPVS

14.2.3.19. Microwave Heating in Si Solar Cell Fabrication

14.2.3.20. Refrigeration PV System

14.2.3.21. Solar Collectors and Receivers

14.2.3.22. Solar Drying System

14.2.3.23. Water Networks With Solar PV Energy

14.2.3.24. Wind and Solar Integrated to Smart Grid

14.2.3.25 Green Data Centers

14.3 Prospective of Solar Cells

14.4 Conclusion

References

15. Semitransparent Perovskite Solar Cells

15.1 Introduction

15.2 Device Architectures

15.2.1 Conventional n-i-p Device Structure

15.2.2 Inverted p-i-n Device Structure

15.3 Optical Assessment

15.3.1 Average Visible Transmittance

15.3.2 Corresponding Color Temperature

15.3.3 Color Rendering Index

15.3.4 Transparency Color Perception

15.3.5 Light Management

15.4 Materials. 15.4.1 Photoactive Layer

15.4.2 Charge Transport Layers (ETL and HTL)

15.4.3 Transparent Electrode

15.5 Applications. 15.5.1 Building-Integrated Photovoltaics

15.5.2 Tandem Devices

15.6 Conclusion

References

16. Flexible Solar Cells

16.1 Introduction. 16.1.1 Need for Solar Energy Harnessing

16.1.2 Brief Overview of Generations of Solar Cells

16.1.3 Limitations of Solar Cells

16.1.4 What is Flexible Solar Cell (FSC)?

Why is it needed?

16.2 Materials for FSCs

16.2.1 Semiconductors

16.2.2 Substrates

16.2.3 Electrodes

16.2.4 Encapsulations

16.3 Thin-Film Deposition

16.3.1 R2R Processing

16.3.2 Chemical Bath Deposition

16.3.3 Chemical Vapor Deposition

16.3.4 Dip Coating

16.3.5 Spin Coating

16.3.6 Screen Printing

16.4 Characterizations for FSCs

16.4.1 Material Characterization

16.5 Issues in FSCs

16.6 Performance Comparison of RSCs and FSCs

16.7 Applications of Flexible Solar Cell

16.8 Conclusion

References

Index

Also of Interest

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

Figure 1.29 Benzodithiophene based (BTR and BTR-Cl) small-molecule donors.

Figure 1.30 Small-molecule donors from benzodithiophene and alkylsilyl-thienyl–based conjugated side chains.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Fundamentals of Solar Cell Design
Подняться наверх