Fundamentals of Solar Cell Design
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Rajender Boddula. Fundamentals of Solar Cell Design
Table of Contents
Guide
List of Illustrations
List of Tables
Pages
Fundamentals of Solar Cell Design
Preface
1. Organic Solar Cells
1.1 Introduction
1.2 Classification of Solar Cells
1.3 Solar Cell Structure
1.4 Photovoltaic Parameters or Terminology Used in BHJOSCs. 1.4.1 Open-Circuit Voltage Voc
1.4.2 Short-Circuit Current Jsc
1.4.3 Incident-Photon-to-Current Efficiency (IPCE)
1.4.4 Power Conversion Efficiency ηp (PCE)
1.4.5 Fill Factor (FF)
1.5 Some Basic Design Principles/Thumb Rules Associated With Organic Materials Required for BHJOSCs
1.6 Recent Research Advances in Small-Molecule Acceptor and Polymer Donor Types
1.7 Recent Research Advances in All Small-Molecule Acceptor and Donor Types
1.8 Conclusion
Acknowledgement
References
2. Plasmonic Solar Cells
2.1 Introduction
2.1.1 Plasmonic Nanostructure
2.1.2 Classification of Plasmonic Nanostructures
2.2 Principles and Working Mechanism of Plasmonic Solar Cells. 2.2.1 Working Principle
2.2.2 Mechanism of Plasmonic Solar Cells
2.3 Important Optical Properties
2.3.1 Trapping of Light
2.3.2 Scattering and Absorption of Sunlight
2.3.3 Multiple Energy Levels
2.4 Advancements in Plasmonic Solar Cells
2.4.1 Direct Plasmonic Solar Cells
2.4.2 Plasmonic-Enhanced Solar Cell
2.4.3 Plasmonic Thin Film Solar Cells
2.4.4 Plasmonic Dye Sensitized Solar Cells (PDSSCs)
2.4.5 Plasmonic Photoelectrochemical Cells
2.4.6 Plasmonic Quantum Dot (QD) Solar Cells
2.4.7 Plasmonic Perovskite Solar Cells
2.4.8 Plasmonic Hybrid Solar Cells
2.5 Conclusion and Future Aspects
Acknowledgements
References
3. Tandem Solar Cell
List of Abbreviations
3.1 Introduction
3.2 Review of Organic Tandem Solar Cell
3.3 Review of Inorganic Tandem Solar Cell
3.4 Conclusion
References
4. Thin-Film Solar Cells
4.1 Introduction
4.2 Why Thin-Film Solar Cells?
4.3 Amorphous Silicon
4.4 Cadmium Telluride
4.5 Copper Indium Diselenide Solar Cells
4.6 Comparison Between Flexible a-Si:H, CdTe, and CIGS Cells and Applications
4.7 Conclusion
References
5. Biohybrid Solar Cells
Abbreviations
5.1 Introduction
5.2 Photovoltaics
5.3 Solar Cells
5.3.1 First-Generation
5.3.2 Second-Generation
5.3.3 Third-Generation
5.3.4 Fourth-Generation
5.4 Biohybrid Solar Cells
5.5 Role of Photosynthesis
5.6 Plant-Based Biohybrid Devices
5.6.1 PS I–Based Biohybrid Devices
5.6.2 PS II–Based Biohybrid Devices
5.7 Dye-Sensitized Solar Cells
5.8 Polymer and Semiconductors-Based Biohybrid Solar Cells
5.9 Conclusion
References
6. Dye-Sensitized Solar Cells
6.1 Introduction
6.2 Cell Architecture and Working Mechanism
6.3 Fabrication of Simple DSSC in Lab Scale
6.4 Electrodes
6.5 Counter Electrode
6.6 Blocking Layer
6.7 Electrolytes Used
6.7.1 Liquid-Based Electrolytes
6.7.1.1. Electrical Additives
6.7.1.2. Organic Solvents
6.7.1.3. Ionic Liquids
6.7.1.4. Iodide/Triiodide-Free Mediator and Redox Couples
6.7.2 Quasi-Solid-State Electrolytes
6.7.2.1. Thermoplastic-Based Polymer Electrolytes
6.7.2.2. Thermosetting Polymer Electrolytes
6.7.3 Solid-State Transport Materials
6.7.3.1. Inorganic Hole Transport Materials
6.7.3.2. Organic Hole Transport Materials
6.7.3.3. Solid-State Ionic Conductors
6.8 Commonly Used Natural Dyes in DSSC. 6.8.1 Chlorophyll
6.8.2 Flavonoids
6.8.3 Anthocyanins
6.8.4 Carotenoids
6.9 Calculations. 6.9.1 Power Conversion Efficiency
6.9.2 Fill Factor
6.9.3 Open-Circuit Voltage
6.9.4 Short Circuit Current
6.9.5 Determination of Energy Gap of Electrode Material Adsorbed With Natural Dye
6.9.6 Absorption Coefficient
6.9.7 Dye Adsorption
6.10 Conclusion
References
7. Characterization and Theoretical Modeling of Solar Cells
7.1 Introduction
7.2 Classification of SC
7.2.1 Inorganic Solar Cells
7.2.2 Organic Solar Cell
7.3 Working Principle of DSSC
7.4 Operation Principle of DSSC
7.5 Photovoltaic Parameters
7.6 Theoretical and Computational Methods
7.6.1 Density Functional Theory (DFT)
7.6.2 Basis Sets
7.6.3 TDDFT Method
7.6.4 Molecular Descriptors
7.6.5 Force Field Parameterization for MD Simulations
7.6.6 Excited States
7.6.7 UV-Vis Spectroscopy
7.6.8 Charge Transfer and Carrier Transport
7.6.9 Coarse-Grained (CG) Simulations
7.6.10 Kinetic Monte Carlo (KMC) Modeling
7.6.11 Car-Parrinello Method
7.6.12 Solvent Effects
7.6.13 Global Reactivity Descriptors
7.7 Conclusion
References
8. Efficient Performance Parameters for Solar Cells
8.1 Introduction
8.1.1 Potential, Production, and Climate of Ankara
8.2 Solar Radiation Intensity Calculation. 8.2.1 Horizontal Superficies. 8.2.1.1. On a Daily Basis Total Sun Irradiation
8.2.1.2. Daily Diffuse Sun Irradiation
8.2.1.3. Momentary Total Sun Irradiation
8.2.1.4. Direct and Diffuse Sun Radiation
8.2.2 On Inclined Superficies, Computing Sun Irradiation Intensity. 8.2.2.1. Direct Momentary Sun Radiation
8.2.2.2. Diffuse Sun Radiation
8.2.2.3. Momentary Reflecting Radiation
8.2.2.4. Total Sun Radiation
8.3 Methodology. 8.3.1 The Solar Radiation Assessments by Correlation Models With MATLAB Simulation Software
8.3.2 MATLAB Simulation Results and Findings
8.3.3 For Ankara Province, the Determinants of the Most Efficiency Solar Cell With AHP Methodology
8.4 Conclusions
References
9. Practices to Enhance Conversion Efficiencies in Solar Cell
9.1 Introduction
9.2 Basics on Conversion Efficiency
9.3 Approaches for Improving Conversion Efficiencies in Solar Cells
9.4 Conclusion
Acknowledgements
References
10. Solar Cell Efficiency Energy Materials
10.1 Introduction
10.2 Solar Cell Efficiency
10.3 Historical Development of Solar Cell Materials
10.4 Solar Cell Materials and Efficiencies
10.4.1 Crystalline Silicon
10.4.2 Silicon Thin-Film Alloys
10.4.3 III-V Semiconductors
10.4.4 Chalcogenide
10.4.4.1 Chalcopyrites
10.4.4.2 Cadmium Telluride (CdTe)
10.4.5 Organic Materials
10.4.6 Hybrid Organic-Inorganic Materials
10.4.6.1 Dye-Sensitized Solar Cell Materials
10.4.6.2 Perovskites
10.4.7 Quantum Dots
10.5 Conclusion and Prospects
References
11. Analytical Tools for Solar Cell
11.1 Introduction
11.2 Transient Absorption Spectroscopy
11.2.1 Application of Transient Absorption Spectroscopy in Solar Cells
11.3 Electron Tomography
11.3.1 Application of Electron Tomography (ET) in Solar Cells
11.4 Conductive Atomic Force Microscopy (C-AFM)
11.4.1 Application of C-AFM in Solar Cells
11.5 Kelvin Probe Force Microscopy
11.5.1 Application of Scanning Kelvin Probe Force Microscopy for Solar Cells
11.6 Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy
11.6.1 Application of Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy in Solar Cell
11.7 Conclusion
References
12. Applications of Solar Cells
12.1 Introduction
12.2 An Overview on Photovoltaic Cell. 12.2.1 History
12.2.2 Working Principle of Solar Cell
12.2.3 First-Generation Photovoltaic Cells: Crystalline Silicon Form
12.2.4 Second-Generation Photovoltaic Cells: Thin-Film Solar Cells
12.2.5 Third-Generation Photovoltaic Cells
12.3 Applications of Solar Cells. 12.3.1 Perovskite Solar Cell
12.3.2 Dye-Sensitized Solar Cell
12.3.3 Nanostructured Inorganic-Organic Heterojunction Solar Cells (NSIOHSCs)
12.3.4 Polymer Solar Cells
12.3.5 Quantum Dot Solar Cell (QDCs)
12.3.6 Organic Solar Cells
12.4 Conclusion and Summary
References
13. Challenges of Stability in Perovskite Solar Cells
13.1 Introduction
13.2 Degradation Phenomena and Stability Measures in Perovskite
13.2.1 Thermal Stability
13.2.2 Structural and Chemical Stability
13.2.3 Oxygen and Moisture
13.2.4 Visible and UV Light Exposure
13.3 Stability-Interface Interplay
13.3.1 Chemical Reaction at the Interface
13.3.2 Degradation on the Top Electrode
13.3.3 Hysteresis Phenomenon in PSC Devices
13.4 Effect of Selective Contacts on Stability. 13.4.1 Electron-Transport Layers
13.4.2 Hole Transport Layers
13.5 Conclusion
References
14. State-of-the-Art and Prospective of Solar Cells
Acronyms
14.1 Introduction
14.2 State-of-the-Art of Solar Cells
14.2.1 Production Volume
14.2.2 Cost Breakdown
14.2.3 Main Technologies
14.2.3.1. Si Solar Cell Arrays
14.2.3.2. DSSCs
14.2.3.3. Photoanodes
14.2.3.4. C/Si Heterojunctions
14.2.3.5. a-C/Si Heterojunctions
14.2.3.6. Non-Fullerene Acceptor Bulk Heterojunctions
14.2.3.7. a-Si
14.2.3.8. Perovskites
14.2.3.9. Metal-Halide–Based Perovskites
14.2.3.10. Sn-Based Perovskites
14.2.3.11. Heavily Doped Solar Cells
14.2.3.12. PV Building Substrates
14.2.3.13. Solar Tracking System
14.2.3.14. Solar Concentrators
14.2.3.15. Solar Power Satellite
14.2.3.16. Roof-Top Solar PV System
14.2.3.17. Short-Wavelength Solar-Blind Detectors
14.2.3.18. GCPVS
14.2.3.19. Microwave Heating in Si Solar Cell Fabrication
14.2.3.20. Refrigeration PV System
14.2.3.21. Solar Collectors and Receivers
14.2.3.22. Solar Drying System
14.2.3.23. Water Networks With Solar PV Energy
14.2.3.24. Wind and Solar Integrated to Smart Grid
14.2.3.25 Green Data Centers
14.3 Prospective of Solar Cells
14.4 Conclusion
References
15. Semitransparent Perovskite Solar Cells
15.1 Introduction
15.2 Device Architectures
15.2.1 Conventional n-i-p Device Structure
15.2.2 Inverted p-i-n Device Structure
15.3 Optical Assessment
15.3.1 Average Visible Transmittance
15.3.2 Corresponding Color Temperature
15.3.3 Color Rendering Index
15.3.4 Transparency Color Perception
15.3.5 Light Management
15.4 Materials. 15.4.1 Photoactive Layer
15.4.2 Charge Transport Layers (ETL and HTL)
15.4.3 Transparent Electrode
15.5 Applications. 15.5.1 Building-Integrated Photovoltaics
15.5.2 Tandem Devices
15.6 Conclusion
References
16. Flexible Solar Cells
16.1 Introduction. 16.1.1 Need for Solar Energy Harnessing
16.1.2 Brief Overview of Generations of Solar Cells
16.1.3 Limitations of Solar Cells
16.1.4 What is Flexible Solar Cell (FSC)?
Why is it needed?
16.2 Materials for FSCs
16.2.1 Semiconductors
16.2.2 Substrates
16.2.3 Electrodes
16.2.4 Encapsulations
16.3 Thin-Film Deposition
16.3.1 R2R Processing
16.3.2 Chemical Bath Deposition
16.3.3 Chemical Vapor Deposition
16.3.4 Dip Coating
16.3.5 Spin Coating
16.3.6 Screen Printing
16.4 Characterizations for FSCs
16.4.1 Material Characterization
16.5 Issues in FSCs
16.6 Performance Comparison of RSCs and FSCs
16.7 Applications of Flexible Solar Cell
16.8 Conclusion
References
Index
Also of Interest
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106
.....
Figure 1.29 Benzodithiophene based (BTR and BTR-Cl) small-molecule donors.
Figure 1.30 Small-molecule donors from benzodithiophene and alkylsilyl-thienyl–based conjugated side chains.
.....