Mobile Communications Systems Development

Mobile Communications Systems Development
Автор книги: id книги: 2039606     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14684,8 руб.     (141,48$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119778707 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Provides a thorough introduction to the development, operation, maintenance, and troubleshooting of mobile communications systems    Mobile Communications Systems Development: A Practical Approach for System Understanding, Implementation and Deployment  is a comprehensive “how to” manual for mobile communications system design, deployment, and support. Providing a detailed overview of end-to-end system development, the book encompasses operation, maintenance, and troubleshooting of currently available mobile communication technologies and systems. Readers are introduced to different network architectures, standardization, protocols, and functions including 2G, 3G, 4G, and 5G networks, and the 3GPP standard.  In-depth chapters cover the entire protocol stack from the Physical (PHY) to the Application layer, discuss theoretical and practical considerations, and describe software implementation based on the 3GPP standardized technical specifications. The book includes figures, tables, and sample computer code to help readers thoroughly comprehend the functions and underlying concepts of a mobile communications network. Each chapter includes an introduction to the topic and a chapter summary. A full list of references, and a set of exercises are also provided at the end of the book to test comprehension and strengthen understanding of the material. Written by a respected professional with more than 20 years’ experience in the field, this highly practical guide:  Provides detailed introductory information on GSM, GPRS, UMTS, and LTE mobile communications systems and networks Describes the various aspects and areas of the LTE system air interface and its protocol layers Covers troubleshooting and resolution of mobile communications systems and networks issues Discusses the software and hardware platforms used for the development of mobile communications systems network elements Includes 5G use cases, enablers, and architectures that cover the 5G NR (New Radio) and 5G Core Network  Mobile Communications Systems Development  is perfect for graduate and postdoctoral students studying mobile communications and telecom design, electronic engineering undergraduate students in their final year, research and development engineers, and network operation and maintenance personnel.

Оглавление

Rajib Taid. Mobile Communications Systems Development

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Mobile Communications Systems Development. A Practical Introduction to System Understanding, Implementation, and Deployment

About the Author

Preface

Acknowledgments

List of Abbreviations

1 Introduction : Career Opportunities in Mobile Communications Networks Space

Part I Network Architectures, Standardization, Protocols, and Functions

2 Network Architectures, Standardizations Process. Introduction

2.1 Network Elements and Basic Networks Architectures

2.1.1 GSM (2G) Network Architecture

2.1.2 General Packet Radio Service (GPRS‐2.5G) Network Architecture

2.1.3 Universal Mobile Telecommunications System (3G) Network Architecture

2.1.4 LTE (4G) Network Architecture

2.1.5 GSM, UMTS, LTE, and 5G Network Elements: A Comparison

2.1.6 Circuit Switched (CS) vs Packet Switched (PS)

2.2 Mobile Communication Network Domains

2.2.1 AN Domain

2.2.2 Core Network (CN) Domain

2.2.3 Network Domains and Its Elements

2.2.4 Example: End‐to‐End Mobile Network Information Flow

2.2.5 Example: GSM MO Call

2.3 Mobile Communications Systems Evolutions

2.3.1 Evolutions of Air Interface

2.3.2 Evolutions of 3GPP Networks Architectures

2.4 Mobile Communications Network System Engineering

2.4.1 Mobility Management

2.4.2 Air Interface Management

2.4.3 Subscribers and Services Management

2.4.4 Security Management

2.4.5 Network Maintenance

2.5 Standardizations of Mobile Communications Networks. 2.5.1 3rd Generation Partnership Project (3GPP)

2.5.2 3GPP Working Groups

2.5.3 3GPP Technical Specification and Technical Report

2.5.4 Stages of a 3GPP Technical Specification

2.5.5 Release Number of 3GPP Technical Specification

2.5.6 3GPP Technical Specification Numbering Nomenclature

2.5.7 Vocabulary of 3GPP Specifications

2.5.8 Examples in a 3GPP Technical Specification

2.5.9 Standardization of Technical Specifications by 3GPP

2.5.10 Scope of 3GPP Technical Specification (TS)

2.5.11 3GPP TS for General Description of a Protocol Layer

2.5.12 3GPP TS Drafting Rules: Deriving Requirements

2.5.13 Download 3GPP Technical Specifications

2.5.14 3GPP Change Requests

2.5.15 Learnings from 3GPP Meetings TDocs

2.6 3GPP Releases and Its Features

Chapter Summary

3 Protocols, Interfaces, and Architectures. Introduction

3.1 Protocol Interface and Its Stack

3.1.1 Physical Interface

3.1.2 Logical Interface

Example 3.1 GSM E1 Physical Interface

Example 3.2 Mobile Communications Networks and Their Physical Air Interface

Example 3.3 LTE/EPC S1 Logical Interface and 5G NG Logical Interface

Example 3.4 LTE Logical Interfaces with the Same Protocol Stack

3.1.3 Logical Interfaces’ Names and Their Protocol Stack

3.1.4 Examples of Logical Interface and Its Protocol Layers

3.2 Classifications of Protocol Layers

3.2.1 Control Plane or Signaling Protocols

3.2.2 User Plane Protocols

Example 3.5 File Transfer Protocol (FTP) Protocol

Example 3.6 GPRS Tunneling Protocol

3.3 Grouping of UMTS, LTE, and 5G Air Interface Protocol Layers

3.3.1 Access Stratum (AS): UMTS UE – UTRAN; LTE UE – E‐UTRAN;5G UE ‐ NG‐RAN

Example 3.7 LTE AS Layer: Radio Resource Connection Establishment Procedure

3.3.2 Non‐Access Stratum: UMTS UE – CN, LTE UE – EPC; 5G UE‐Core

Example 3.8 LTE/EPS NAS Layer: EPS Mobility Management Layer Procedure

Example 3.9 5G NAS Layer: 5G Session Management Layer Procedure

3.4 Initialization of a Logical Interface

Example 3.10 LTE/EPS S1‐AP (eNodeB‐MME) Logical Interface Initialization

3.5 Protocol Layer Termination

3.6 Protocol Sublayers

3.7 Protocol Conversion

3.8 Working Model of a 3GPP Protocol Layer: Services and Functions

Example 3.11 Functions of LTE Air Interface RLC Layer

3.9 General Protocol Model Between RAN and CN (UMTS, LTE, 5G)

3.10 Multiple Transport Networks, Protocols, and Physical Layer Interfaces

Example 3.12 Multiple Transport Networks for UMTS Iu Interface

Example 3.13 GPRS Gb‐Interface Multiple Physical Layer Interfaces

3.11 How to Identify and Understand Protocol Architectures

3.11.1 Identifying a Logical Interface, Protocol Stack, and Its Layers

Example 3.14 GSM Circuit‐Switched BSS and Air Interface Layer 3 Technical Specifications

3.11.2 Identification of Technical Requirements Using Interface Name

3.12 Protocol Layer Procedures over CN Interfaces

3.12.1 Similar Functions and Procedures over the CN Interfaces

Example 3.15 LTE/EPS: PS Domain NAS Transport Messages

3.12.2 Specific Functions and Procedures over the CN Interfaces

Chapter Summary

4 Encoding and Decoding of Messages. Introduction

4.1 Description and Encoding/Decoding of Air Interface Messages

4.1.1 Encoding/Decoding: Air Interface Layer 3 Messages

Example 4.1 Illustration of LTE/EPS NAS MM Layer Message

Example 4.2 Illustration of LTE/EPS NAS SM Layer Message

Example 4.3 Illustration of Encoding and Transmissions of Layer 3/NAS Layer Message

4.1.2 Encoding/Decoding: LTE and 5G NR Layer 2: RLC Protocol

4.1.3 Encoding/Decoding: LTE and 5G NR Layer 2: MAC Protocol

4.1.4 CSN.1 Encoding/Decoding: GPRS Layer 2 Protocol (RLC/MAC)

4.1.5 ASN.1 Encoding/Decoding: UMTS, LTE, and 5G NR Layer 3 Protocol

4.1.6 Direct/Indirect Encoding Method

Example 4.4 LTE and 5G NR Air Interface RRC Layers: RRC Connection/Setup Request ASN.1 Message

4.1.7 Segmented Messages over the Air Interface

4.1.8 Piggybacking a Signaling Message

Example 4.5 Piggybacking of GSM Air Interface Complete Layer 3 Information Using SCCP

Example 4.6 Piggybacking Using LTE or 5G NAS Layer Signaling Message

Example 4.7 Piggybacking GTPv2 Control Plane Messages

4.2 Encoding/Decoding of Signaling Messages: RAN and CN

Example 4.8 LTE NAS Layer: Downlink NAS Transport: MME to eNodeB

Chapter Summary

5 Network Elements : Identities and Its Addressing. Introduction

5.1 Network Elements and Their Identities

5.2 Permanent Identities

5.3 Temporary Identities Assigned by CN

5.3.1 GSM System Temporary Identities

5.3.2 GPRS System Temporary Identities

5.3.3 LTE/EPS System Temporary Identities

Example 5.1 Network Identities of LTE Network Elements

Example 5.2 LTE/EPS Globally Unique Temporary UE Identity (GUTI)

Example 5.3 LTE Physical Layer Cell Identity (PCI)

5.4 Temporary Identities Assigned by RAN: RNTI

5.5 Usages of Network Identities

5.6 Native and Mapped Network Identities

Example 5.4 GPRS MS Identity: Mapping an NRI and TLLI into a P‐TMSI

Example 5.5 UE Identity Mapping due to the Intersystem Change from GERAN/UTRAN to E‐UTRAN

5.7 LTE UE Application Protocol Identity

Chapter Summary

6 Interworking and Interoperations of Mobile Communications Networks. Introduction

6.1 Requirements and Types of Interworking

6.2 Interworking Through Enhanced Network Elements

6.2.1 Interworking for Voice Call Through IMS: VoLTE

6.2.1.1 IP Multimedia Subsystem (IMS)

6.2.1.2 UE Registration and Authentication

Example 6.1 Illustration: UE Registration and VoLTE Call over IMS

6.2.2 Interworking for VoLTE Call Through LTE/EPS: SRVCC

6.2.3 Interworking for Voice Call Through LTE/EPS: CSFB

Example 6.2 CSFB: LTE UE Fall‐back to CS domain for voice call

Example 6.3 LTE Voice Call Through GSM Network and CSFB Feature

6.3 Interworking Through Legacy Network Elements

6.4 Interworking Between LTE/EPS and 5G Systems

6.5 Interoperations of Networks: LTE/EPS Roaming

6.5.1 Roaming Through Interoperations of Enhanced Networks Elements

6.5.2 Roaming Through Interoperations of Legacy Networks Elements

6.6 UE Mode of Operation

Example 6.4 UE usage setting and voice domain preference during LTE/EPS Attach Procedure

Example 6.5 UE usage setting and voice domain preference during LTE/EPS Attach Procedure with IMS

6.7 Function of E‐UTRAN in a VoLTE Call

Chapter Summary

7 Load Balancing and Network Sharing. Introduction

7.1 Core Network Elements Load Balancing

7.1.1 Identification of NAS Node: NRI and Its Source

7.1.2 NAS Node Selection Function

Example 7.1 Typical LTE/EPC MME Selection and Allocation for Load Balancing Using the WRR Method

7.2 Network Sharing

7.2.1 GSM/GPRS/LTE RAN Sharing Through MOCN Feature

7.2.2 5G NG‐RAN Sharing Through MOCN Feature (Release 16)

Chapter Summary

8 Packets Encapsulations and Their Routing. Introduction

8.1 User Data Packets Encapsulations

8.1.1 Packets Encapsulations at the CN and RAN

8.1.1.1 GPRS Tunneling Protocol ( GTP)

8.1.1.2 GTP Functions

8.1.1.3 GTP User Plane PDU: G‐PDU

8.1.1.4 GTP Control Plane PDU

8.1.1.5 Example: GTP and Packet Encapsulations at LTE EPC

8.1.2 Packet Encapsulations over Air Interface

8.2 IP Packet Routing in Mobile Communications Networks

8.3 IP Header Compression and Decompression

Example 8.1 IPv4 Header Compression for VoIP Calls

Chapter Summary

9 Security Features in Mobile Communications Networks. Introduction

9.1 A Brief on the Security Architecture: Features and Mechanisms

9.2 Security Features and Its Mechanisms

9.3 GSM Security Procedures

9.4 UMTS, LTE, and 5G: AS and NAS Layer Security Procedures

Example 9.1 LTE/EPS Security Features Activation for AS and NAS Layers

9.5 Security Contexts

9.6 Security Interworking

Chapter Summary

Part II Operations and Maintenances

10 Alarms and Faults Managements. Introduction

10.1 Network Elements Alarm and Its Classifications

10.2 Sources of Abnormal Events and Alarms

10.3 Identifying Sources of Alarms from 3GPP TSs

10.3.1 Abnormal Conditions

10.3.2 Protocol Layer Error Handling

10.3.3 Abnormal Conditions Due to Local Errors

10.4 Design and Implementation of an Alarm Management System

10.4.1 Design and Components of an Alarm

10.4.2 Alarm Application Programming Interfaces (APIs)

10.4.3 Alarm Database

10.5 Alarm Due to Protocol Error

10.5.1 Sample Protocol Error Alarm Description

10.6 Alarm Due to Abnormal Conditions

10.6.1 Normal Scenario

10.6.2 Abnormal Scenario

10.6.3 Sample Alarm Description

10.6.4 Sample Alarm Generation

10.6.5 Sample Protocol Error Alarm Generation

10.7 How to Troubleshoot Protocol Error Using the Alarm Data

Chapter Summary

11 Performance Measurements and Optimizations of Mobile Communications Networks. Introduction

11.1 Counters for Performance Measurements and Optimizations

Example 11.1 Counters to Store GSM Circuit‐Switched Voice Call Processing Events

11.2 Performance and Optimizations Management System

Example 11.2 Resources Allocation: GSM RR Layer Counters

Example 11.3 Resources Allocation: LTE Air Interface Modulation and Coding Scheme Allocation Counters

Example 11.4 5G NAS Layer Procedure: Registration Request Procedure Counters

11.3 Key Performance Indicator (KPI) 11.3.1 What Is a KPI?

Example 11.5 LTE/EPS ATTACH Procedure: KPI and Measurement Counters

Example 11.6 KPI for Mobile Originating (MO) GSM Call Flow

11.3.2 KPI Domains

11.3.3 KPI for Signaling or Control Plane

11.3.4 KPI for User or Data Plane

Example 11.7 LTE Air Interface Layer 2: RLC Layer and User Application Throughput Counters

11.3.5 KPI Categories

11.3.6 KPI Evaluation Steps

11.3.7 Troubleshooting and Improving KPI

11.3.8 Components of a KPI Definition

Chapter Summary

12 Troubleshooting of Mobile Communications Networks Issues. Introduction

12.1 Air Interface‐Related Issues

12.1.1 Drive Test, Data Collection, and Its Analysis

12.2 Debugging Issues with IP‐Based Logical Interface

12.2.1 IP Protocol Analyzer

12.2.2 Network/Application Throughput Issue

12.2.3 Switch Port Mirroring

12.3 Conformance Testing Issues

12.3.1 Example: Mobile Device (MS)/User Equipment (UE) Conformance Test

12.3.2 Example: Location Area Update Request

12.4 Interoperability Testing (IOT) Issues

12.5 Interworking Issues

12.6 Importance of Log/Traces and Its Collections

12.7 Steps for Troubleshooting

Chapter Summary

Part III Mobile Communications Systems Development

13 Core Software Development Fundamentals. Introduction

13.1 A Brief on Software Development Fundamentals

13.1.1 Requirements Phase

13.1.2 Design

13.1.3 Implementation

13.1.4 Integration and Testing

13.1.5 Operation and Maintenance

13.2 Hardware Platforms: Embedded System, Linux Versus PC

13.2.1 System Development Using Embedded System Board

13.2.2 System Development Using Multicore Hardware Platform

13.2.2.1 What Is a Core?

13.2.2.2 Network Element Development Using Multicore Platform

13.2.2.3 Runtime Choices of Multicore Processor

13.2.2.4 Software Programming Model for Multicore Processor

13.3 Selecting Software Platforms and Features

13.3.1 Selecting Available Data/Logical Structures

13.3.1.1 Advanced Data Structures

13.3.1.2 How Data Structure Affects the Application’s Performance

13.3.2 Selecting an Operating System Services/Facilities

13.3.2.1 Advance Features of Operating System: IPC

13.4 Software Simulators for a Mobile Communications Network

13.5 Software Root Causes and Their Debugging

13.5.1 Incorrect Usages of Software Library System Calls/APIs

13.5.2 Incorrect Usages of System Resources

13.5.3 Bad Software Programming Practices

13.6 Static Code Analysis of Software

13.7 Software Architecture and Software Organization

Example 13.1 GSM RR Allocation and Management (RRM) and Its Object Model

13.8 System and Software Requirements Analysis

13.9 Software Quality: Reliability, Scalability, and Availability

13.9.1 Reliability

13.9.2 Scalability

13.9.3 Availability

Chapter Summary

14 Protocols, Protocol Stack Developments, and Testing. Introduction

14.1 Components of a 3GPP Protocol TS

14.2 3GPP Protocol Layer Structured Procedure Description

14.3 Protocol Layer Communications

14.3.1 Layer‐to‐Layer Communication Using Service Primitives

14.3.2 Layer‐to‐Layer Communication: SAP

Example 14.1 SAPs Used in the GSM System

14.3.3 Peer‐to‐Peer Layer Communication: PDU and Service Data Unit (SDU)

14.3.4 Types of PDU

14.3.5 Formats of PDU

14.4 Air Interface Message Format: Signaling Layer 3. 14.4.1 A Brief on the Air Interface Layer 3 Protocol Stack

14.4.2 Classification of Layer 3 Messages

14.4.3 Layer 3 Protocol Header: Signaling Message Format

14.4.4 Layer 3 Protocol Header: Protocol Discriminator

14.4.5 Layer 3 Protocol Header: GSM, GPRS Skip Indicator

14.4.6 Layer 3 Protocol Header: GSM, GPRS Transaction Identifier

Example 14.2 GPRS MM (GMM) Air Interface Layer 3 Message: DETACH REQUEST

14.4.7 Layer 3 Protocol Header: LTE/EPS Bearer Identity

14.4.8 Layer 3 Protocol Header: 5GSM PDU Session Identity

14.4.9 Constructing a Layer 3 Message

Example 14.3 Generic C/C++ Functions for Encoding and Decoding of Protocol Information

14.4.10 Security Protected LTE/EPS and 5G NAS Layer MM Messages

14.4.11 Layer 3 Protocol Layer's Message Dump

14.5 Air Interface Message Format: Layer 2

Example 14.4 GSM Layer 3 Call Control “Connect” Message

14.6 RAN – CN Signaling Messages

14.6.1 Protocol Layer Elementary Procedure

Example 14.5 Handover Preparation EP and its Messages

14.6.2 Types and Classes of EPs

14.6.3 EPs Code

14.6.4 Criticality of IE

14.6.5 Types of Protocol Errors and Its Handling

14.6.6 Choices of Triggering Message

14.6.7 Message Type

14.6.8 Message Description

14.6.9 Example: LTE/EPS S1 Interface: S1 Setup Procedure

14.7 Modes of Operation of a Protocol Layer

Example 14.6 Illustrative C‐Pre‐processor Definition: RLC Layer Modes of Operation

14.8 Example of a Protocol Primitive and PDU Definition

Example 14.7 Illustrative C‐Structure Definition of a Primitive

14.9 Example of a Protocol Layer Frame Header Definition

14.10 Examples of System Parameters

14.11 Examples of Protocol Information Elements and Its Identifier

Example 14.9 Illustrative C‐pre‐processor Definitions of Timer, Counter, and System Variables

Example 14.10 Illustrative C‐Pre‐processor Definitions: IEs And IEIs

14.12 3GPP Release Specific Changes Implementation

Example 14.11 Illustrative C‐Pre‐processor Definition of 3GPP GSM RR Message Types

14.13 Examples of Protocol Messages Types

14.14 Protocol Layer Timer Handling

Example 14.12 Air Interface GSM CM Layer 3 System Timer

14.15 Protocol Layer Development Using State Machine

14.16 Protocol Layer Development Using Message Passing

Example 14.13 Protocol Layer Communication Using IPC

14.17 Protocol Layer Data and its Types

14.18 Protocol Layer Control and Configuration

Example 14.14 Modulation Index and Transport Block Index Definition for PDSCH

Example 14.15 Transport Block Index and Size Definition for 1.4 MHz System Bandwidth with Six Physical Resource Blocks (PRBs)

Example 14.16 Protocol Layer Configurations in LTE E‐UTRAN and 5G NG‐RAN

14.19 Protocol Context Information

Example 14.17 Protocol Events for Creation and Usages of Context Information

14.20 Protocol Layer Message Padding

14.21 Device Driver Development

Example 14.18 Device Driver for Processing of GSM E1 Physical Interface Frames

14.22 Guidelines for Protocol Stack/Layer Development

14.23 Software Profiling, Tools and Performance Improvement

14.24 Protocol Stack Testing and Validation

Example 14.19 Network Elements Performance Testing and Validation Through Software Simulator

Chapter Summary

15 Deriving Requirements Specifications from a TS. Introduction

15.1 3GPP Protocol Layer Procedures

15.1.1 LTE UE Mode of Operation Requirements

15.1.2 LTE UE ATTACH Procedure Requirements

15.1.3 LTE UE DETACH Procedure Requirements

15.1.4 LTE UE Tracking Area Update Procedure Requirements

15.2 3GPP System Feature Development Requirements

15.2.1 Identification of System/Network Elements Interfaces Changes

15.2.2 Identifications of Impacts on Performance

15.2.3 Identifications of Impacts on Feature Management

15.2.4 Identification of Interworking Requirements with Existing Features

15.2.5 Charging and Accounting Aspects

15.3 Example Feature: Radio Access Network Sharing

15.3.1 Effects on Network Elements

15.3.2 Effects on Logical Interfaces

15.3.3 Selection of Core Network Operator: PLMN Id

15.4 Example: Interworking/Interoperations

15.4.1 Circuit‐Switched Fall Back (CSFB)

15.4.2 Single Radio Voice Call Continuity (SRVCC)

15.5 3GPP System Feature and High‐Level Design

Chapter Summary

Part IV 5G System and Network

16 5G Network: Use Cases and Architecture. Introduction

16.1 5G System (5GS) Use Cases

16.1.1 Enablers and Key Principles of 5GS Use Cases

16.1.2 Other Enablers in 5G System

16.2 Support of Legacy Services by 5G System

16.3 5G System Network Architecture

16.3.1 3GPP Access Architecture

16.3.2 Non‐3GPP Access Architecture

16.4 5G System NG–RAN/gNB Logical Architecture

16.5 5GC System Architecture Elements

16.6 5G System Deployment Solutions

16.6.1 E–UTRA–NR Dual Connectivity (EN–DC) for NSA Deployment

Example 16.1 Usages of Message Containers in ENDC

16.7 5G System and LTE/EPS Interworking

16.7.1 RAN‐Level Interworking

16.7.2 Core Network (CN) Level Interworking: N26 Interface

16.7.2.1 Single Registration Mode with N26 Interface

16.7.2.2 Dual Registration Mode: Without N26 Interface

16.8 5G System Native and Mapped Network Identities

16.8.1 Mobility Area Identifiers

16.8.2 UE/Subscriber Permanent Identifiers

16.8.3 Core Network Identifiers

16.8.4 RAN Identifiers

16.8.5 Core Network Temporary Identities

16.9 5G System Network Slicing

16.9.1 Identities for a Network Slice

16.9.2 Impacts of Network Slicing Feature

16.10 Management and Orchestration (MANO) of 5G Network

16.11 5G System Security

16.11.1 UE Authentication Frameworks and Methods

16.11.2 Primary Authentication and Secondary Authentication

16.11.3 Key Hierarchy and Authentication Vector

16.11.4 New Security Requirements in 5G System

16.11.5 Subscriber Identities/Privacy Protection

Chapter Summary

17 Introduction to GSM, UMTS, and LTE Systems Air Interface. Introduction

17.1 Air Interfaces Protocol Architectures

17.2 Protocol Sublayers

17.3 Control Plane and User Plane Protocols

17.4 Protocols Domains Classifications

17.5 Access Stratum and Non‐access Stratum

17.6 Message Formats

17.7 Security Over the Air Interface

17.8 Piggybacking for Reduction of Signaling Overhead

17.8.1 Examples Piggybacking of Signaling Messages

18 5G NR Air Interface: Control Plane Protocols. Introduction

18.1 NR Control Plane Protocol Layers

18.2 Session Management (5G SM) Layer

18.2.1 Procedures of 5G SM Layer

18.2.2 PDU Session Types

18.2.3 PDU Session and Service Continuity (SSC)

18.2.4 PDU Sessions for Network Slices

18.2.5 Session Management (SM) Layer States

18.3 Quality of Service (5G QoS)

18.3.1 LTE/EPS QoS Model: EPS Bearer

18.3.2 5GS QoS Model: QoS Flow

18.3.3 GTP‐U Plane Tunnel for PDU Session

18.3.4 Service Data Flow and PCC Rule

18.3.5 Binding of Service Data Flow

18.3.6 QoS Profile and QFI

18.3.7 QoS Rule and QRI

18.3.8 Mapping QoS Flow to Data Radio Bearer

18.3.9 Downlink Data Flow Through GTP‐U Plane Tunnels

18.4 Mobility Management (5G MM) Layer. 18.4.1 Mobility Area Concepts and Identifiers

18.4.2 Requirements of Mobility Management Functions

18.4.3 Functions and Procedures of 5G MM Layer

18.4.4 Mobility Management Layer States

18.4.5 Connection Management (CM) and Service Request

18.4.6 Mobility Pattern of UE

18.5 RRC Layer

18.5.1 Functions and Procedures of RRC Layer

18.5.2 System Information (SI) Broadcast

18.5.3 RRC Layer States

18.5.4 RRC INACTIVE State

18.5.5 Mobility of UE

18.5.5.1 UE Mobility in RRC IDLE State

18.5.5.2 UE Mobility in RRC INACTIVE State

18.5.5.3 UE Mobility in RRC CONNECTED State

18.5.6 Admission Control

Chapter Summary

19 5G NR Air Interface: User Plane Protocols. Introduction

19.1 NR User Plane Protocol Layers

19.2 SDAP Layer

19.3 PDCP Layer

19.4 RLC Layer

19.5 MAC Layer

19.5.1 Functions and Procedures

19.5.2 Scheduling Procedure

19.5.3 Random Access Procedure

19.5.4 Error Correction Through HARQ Procedure

19.5.5 Buffer Status Reporting (BSR) Procedure

19.5.6 Scheduling Request (SR) Procedure

19.5.7 Low Latency in the NR Due to Configured Scheduling

19.5.8 MAC Layer PDU and Header Structures

19.5.9 How MAC Layer Ensures Low‐Latency Requirements

19.5.10 Channel Structures in NR

19.6 Physical Layer

19.6.1 Principles of Transmissions and Its Directions

19.6.2 Physical Layer Functions, Procedures, and Services

19.6.3 OFDM Symbol

19.6.4 NR Frame and Slot Format

19.6.4.1 Subcarrier Spacing (SCS)/Numerologies (μ)

19.6.4.2 Slots per NR Frame and Subframe

19.6.4.3 Slot Formats in TDD Mode

19.6.4.4 Dynamic TDD

19.6.5 Resource Grid and Resource Block

19.6.5.1 Control Resource Set (CORESET)

19.6.5.2 Common Resource Blocks (CRB)

19.6.5.3 Physical Resource Block (PRB)

19.6.5.4 Virtual Resource Block (VRB)

19.6.5.5 Interleaved and Non‐interleaved PRB Allocation

19.6.5.6 PRB Bundling and VRB to PRB Mapping

19.6.5.7 Reference Point “A”

19.6.6 Channel and Transmission Bandwidths

19.6.7 Bandwidth Part (BWP)

19.6.7.1 Types of BWP

19.6.7.2 BWP Configuration

19.6.7.3 BWP Switching and Associated Delay

19.6.8 NR Resource Allocations

19.6.8.1 Frequency Domain Resource Allocation for FDD Transmission

Example 19.1 Frequency Domain Resource Assignment for PDSCH Reception with Resource Allocation Type 0 and Unequal RBs

Example 19.2 Frequency Domain Resource Assignment for PDSCH with Resource Allocation Type 0 and Equal RB

Example 19.3 Frequency Domain Resource Assignment for PDSCH Reception with Resource Allocation Type 1 and SCS: 15 kHz

Example 19.4 Frequency Domain Resource Assignment for PDSCH with Resource Allocation Type 1 and SCS: 30 kHz

19.6.8.2 Time‐Domain Resources Allocation for FDD Transmission

Example 19.5 Default Resource Allocation in the Time Domain (FDD mode) for PDSCH Reception with Different Subcarrier Spacings for PDCCH and PDSCH

Example 19.6 Default Resource Allocation in the Time Domain (FDD) for PDSCH Reception with the Same SCS for PDCCH and PDSCH

Example 19.7 RRC Signaling‐Based Time‐Domain Resource Allocation, for FDD Mode, with Different SCS for PDCCH and PDSCH

19.6.8.3 Time‐Domain Resources Allocation for TDD

19.6.9 Transport Channels and Their Processing Chain

19.6.9.1 CRC Calculation and its Attachment to a Transport Block

19.6.9.2 Code Block Segmentation

19.6.9.3 Channel Encoding with LDPC

19.6.9.4 Rate Matching and Concatenation

19.6.9.5 Multiplexing of UL‐SCH Data and Uplink Control Information

19.6.9.6 LDPC Encoding Examples

Example 19.8 Construction of Parity Check Matrix

Example 19.9 Graph Representation of Parity Check Matric of LDPC Code

19.6.10 Physical Channels and Their Processing Chain. 19.6.10.1 Physical Channels

19.6.10.2 Channel Mappings

19.6.10.3 Multiple Physical Antenna Transmissions

19.6.10.4 Physical Channel Processing Chain

19.6.10.5 Physical Downlink Control Channel (PDCCH)

Example 19.10 UE Decoding of PDCCH from a UE‐Specific Search Space

19.6.10.6 Physical Uplink Control Channel (PUCCH) and Information (UCI)

19.6.11 Code Block Group‐Based Transmissions and Receptions

19.6.12 Physical Signals

19.6.12.1 Reference Signals Transmitted as Part of Physical Channels

19.6.12.2 Sounding Reference Signals

19.6.13 Downlink Synchronization

19.6.14 Millimeter Wave Transmission, Beamforming, and Its Management

● Reference Signals for Beam Management

19.6.15 Cell‐Level Radio Link Monitoring (RLM)

19.6.16 RRM Measurements for UE Mobility

19.6.16.1 RRM Measurement Signals and Their Quantities

19.6.16.2 RRM Measurements Framework

19.6.16.3 Overall RRM Process

Example 19.11 Intra‐/Inter‐Frequency NR and Inter‐RAT DL Signal‐Level Measurements by Mobile Device with Multiple SIMs

19.6.17 Channel State Information (CSI)

19.6.18 Modulation and Coding Schemes (MCSs)

19.6.19 Link Adaptation Procedure

19.6.20 Random Access (RACH) Procedure

Example 19.12 Consider the Calculation of the Duration of CP and Preamble Sequence for the Preamble Format 3 with SCS 5 kHz

Example 19.13 Calculation of OFDM Symbol Locations for RACH Preamble Occasions Within a PRACH Subframe and its Timeslots

19.6.21 NR Radio Resources Management (RRM) Procedure

Example 19.14 Association of NR SS blocks to different RACH occasions

19.6.22 UE Transmit Power Control

19.6.22.1 Types of Power Control Procedure in NR

19.6.22.2 UE Transmit Power Determination Procedure in NR

19.6.23 Effect of Physical Layer on Data Throughputs

Chapter Summary

20 5G Core Network Architecture. Introduction

20.1 Control Plane and User Plane Separation – CUPS

20.1.1 Impacts of CUPS Feature

20.1.2 CUPS in the LTE/EPC Network

20.1.3 CUPS Feature in 5G Core Network

20.2 Service‐Based Architecture (SBA)

20.2.1 Network Functions and Its Instances

20.2.2 Network Functions (NFs) and Their Services Interfaces

20.2.3 5G System Architecture with NF

20.2.4 Network Functions and Their Services and Operations

20.2.5 Network Functions Services Framework

20.2.6 Services API for Network Functions

Example 20.1 NF Registration with NRF Using HTTP PUT Method

Example 20.2 Retrieval of a Profile of an NF Instance from NRF Using HTTP GET Method

Example 20.3 Deregistration of an NF Instance from NRF Using HTTP DELETE Method

Example 20.4 Discovery of a Network Function Instance from NRF Using HTTP GET Method

Example 20.5 UE Context Transfer Request from Source to Target AMF

20.2.7 Network Function Selection

20.3 Network Function Virtualization (NFV)

Chapter Summary

21 5G System: Low‐level Design. Introduction

21.1 Design of 5GC Service Interface and Its Operations

21.2 Design of 5GC NF Service Interface Using UML and C++ Class Diagram

21.3 Usages of C++ Standard Template Library (STL)

21.4 Software Architecture for 5G System

21.4.1 NG‐RAN Logical Nodes Software Architecture

Example 21.1 Radio Network (RNW) Resources Sizing and Cores Allocation

21.4.2 5GC Software Architecture

21.5 Data Types Used in 5GC SBI Communications

Chapter Summary

22 3GPP Release 16 and Beyond. Introduction

22.1 5GS Enhancements as Part of Release 16

22.2 5GS New Features as Part of Release 16

22.3 3GPP Release 17

Chapter Summary

Test Yourself! Introductions

A.1 5G Mobile Communications and Systems Concepts

A.2 Software Program Development Exercises

A.2.1 Generic Utility and Re‐Useable Software

A.2.2 5G System Protocol Layer Development

References

Further Readings

Index. a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

q

r

s

t

u

v

w

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Rajib Taid

In 2013, Rajib left the mobile telecommunication software development domain and joined BCPL, a public‐sector entity at Dibrugarh, close to his hometown in Assam. Currently, the author specializes in IT and enterprise business information systems management.

.....

PCI= (3* Physical Cell Identity Group) + Physical Layer Identity Where Physical Cell Identity Group =0 to 167; Physical Layer Identity=0 to 2.

The PSS has the link to the Physical Layer Identity, which is a Zadoff–Chu sequence, and the SSS has the link to the PCI group. A UE reads the synchronization signals during a cell search procedure in the LTE system. To avoid interference and PCI collision as well as confusion issues, the same PCI is never reused in the neighbouring cells. A PCI collision occurs when two adjacent cells have the same PCI. A PCI confusion occurs when a cell has two neighbours with the same PCI. As the number of PCIs (504) is limited, PCIs are carefully planned and repeated in other cells that are not adjacent or neighbor to each other as shown in Figure 5.4.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Mobile Communications Systems Development
Подняться наверх