Earth Observation Using Python

Earth Observation Using Python
Автор книги: id книги: 2120869     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16413,1 руб.     (152,34$) Читать книгу Купить и скачать книгу Электронная книга Жанр: География Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119606918 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Learn basic Python programming to create functional and effective visualizations from earth observation satellite data sets Thousands of satellite datasets are freely available online, but scientists need the right tools to efficiently analyze data and share results. Python has easy-to-learn syntax and thousands of libraries to perform common Earth science programming tasks. Earth Observation Using Python: A Practical Programming Guide presents an example-driven collection of basic methods, applications, and visualizations to process satellite data sets for Earth science research. Gain Python fluency using real data and case studies Read and write common scientific data formats, like netCDF, HDF, and GRIB2 Create 3-dimensional maps of dust, fire, vegetation indices and more Learn to adjust satellite imagery resolution, apply quality control, and handle big files Develop useful workflows and learn to share code using version control Acquire skills using online interactive code available for all examples in the book The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Оглавление

Rebekah B. Esmaili. Earth Observation Using Python

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

EARTH OBSERVATION USING PYTHON. A Practical Programming Guide

FOREWORD

ACKNOWLEDGMENTS

INTRODUCTION

1 A TOUR OF CURRENT SATELLITE MISSIONS AND PRODUCTS

1.1 History of Computational Scientific Visualization

1.2 Brief Catalog of Current Satellite Products

1.2.1 Meteorological and Atmospheric Science

1.2.2 Hydrology

1.2.3 Oceanography and Biogeosciences

1.2.4 Cryosphere

1.3 The Flow of Data from Satellites to Computer

1.4 Learning Using Real Data and Case Studies

1.5 Summary

References

2 OVERVIEW OF PYTHON

2.1 Why Python?

2.2 Useful Packages for Remote Sensing Visualization

2.2.1 NumPy

2.2.2 Pandas

2.2.3 Matplotlib

2.2.4 netCDF4 and h5py

2.2.5 Cartopy

2.3 Maturing Packages

2.3.1 xarray

2.3.2 Dask

2.3.3 Iris

2.3.4 MetPy

2.3.5 cfgrib and eccodes

2.4 Summary

References

3 A DEEP DIVE INTO SCIENTIFIC DATA SETS

3.1 Storage

3.1.1 Single Values

3.1.2 Arrays

3.2 Data Formats

3.2.1 Binary

3.2.2 Text

3.2.3 Self‐Describing Data Formats

3.2.4 Table‐Driven Formats

3.2.5 geoTIFF

3.3 Data Usage

3.3.1 Processing Levels

3.3.2 Product Maturity

3.3.3 Quality Control

3.3.4 Data Latency

3.3.5 Reprocessing

3.4 Summary

References

4 PRACTICAL PYTHON SYNTAX

4.1 “Hello Earth” in Python

4.2 Variable Assignment and Arithmetic

4.3 Lists

4.4 Importing Packages

4.5 Array and Matrix Operations

4.6 Time Series Data

4.7 Loops

4.8 List Comprehensions

4.9 Functions

4.10 Dictionaries

4.11 Summary

References

5 IMPORTING STANDARD EARTH SCIENCE DATASETS

5.1 Text

5.2 NetCDF

5.2.1 Manually Creating a Mask Variable Using True and False Values

5.2.2 Using NumPy Masked Arrays to Filter Automatically

5.3 HDF

5.4 GRIB2

5.5 Importing Data Using Xarray

5.5.1 netCDF

5.5.2 Examining Vertical Cross Sections

5.5.3 Examining Horizontal Cross Sections

5.5.4 GRIB2 using Cfgrib

5.5.5 Accessing Datasets Using OpenDAP

5.6 Summary

References

6 PLOTTING AND GRAPHS FOR ALL

6.1 Univariate Plots

6.1.1 Histograms

6.1.2 Barplots

6.2 Two Variable Plots

6.2.1 Converting Data to a Time Series

6.2.2 Useful Plot Customizations

6.2.3 Scatter Plots

6.2.4 Line Plots

6.2.5 Adding Data to an Existing Plot

6.2.6 Plotting Two Side‐by‐Side Plots

6.2.7 Skew‐T Log‐P

6.3 Three Variable Plots

6.3.1 Filled Contour Plots

6.3.2 Mesh Plots

6.4 Summary

References

7 CREATING EFFECTIVE AND FUNCTIONAL MAPS

7.1 Cartographic Projections. 7.1.1 Geographic Coordinate Systems

7.1.2 Choosing a Projection

7.1.3 Some Common Projections

7.1.3.1. Plate Carrée

7.1.3.2. Equidistant Conic

7.1.3.3. Orthographic

7.2 Cylindrical Maps

7.2.1 Global Plots

7.2.2 Changing Projections

7.2.3 Regional Plots

7.2.4 Swath Data

7.2.5 Quality Flag Filtering

7.3 Polar Stereographic Maps

7.4 Geostationary Maps

7.5 Creating Maps from Datasets Using OpenDAP

7.6 Summary

References

8 GRIDDING OPERATIONS

8.1 Regular One‐Dimensional Grids

8.2 Regular Two‐Dimensional Grids

8.3 Irregular Two‐Dimensional Grids

8.3.1 Resizing

8.3.2 Regridding

8.3.3 Resampling

8.4 Summary

References

9 MEANINGFUL VISUALS THROUGH DATA COMBINATION

9.1 Spectral and Spatial Characteristics of Different Sensors

9.2 Normalized Difference Vegetation Index (NDVI)

9.3 Window Channels

9.4 RGB

9.4.1 True Color

9.4.2 Dust RGB

9.4.3 Fire/Natural RGB

9.5 Matching with Surface Observations

9.5.1 With User‐Defined Functions

9.5.2 With Machine Learning

9.6 Summary

References

10 EXPORTING WITH EASE

10.1 Figures

10.2 Text Files

10.3 Pickling

10.4 NumPy Binary Files

10.5 NetCDF

10.5.1 Using netCDF4 to Create netCDF Files

10.5.2 Using Xarray to Create netCDF Files

10.5.3 Following Climate and Forecast (CF) Metadata Conventions

10.6 Summary

11 DEVELOPING A WORKFLOW

11.1 Scripting with Python

11.1.1 Creating Scripts Using Text Editors

11.1.2 Creating Scripts from Jupyter Notebook

11.1.3 Running Python Scripts from the Command Line

11.1.4 Handling Output When Scripting

11.2 Version Control

11.2.1 Code Sharing though Online Repositories

11.2.2 Setting up on GitHub

11.3 Virtual Environments

11.3.1 Creating an Environment

11.3.2 Changing Environments from the Command Line

11.3.3 Changing Environments in Jupyter Notebook

11.4 Methods for Code Development

11.5 Summary

References

12 REPRODUCIBLE AND SHAREABLE SCIENCE

12.1 Clean Coding Techniques

12.1.1 Stylistic Conventions

12.1.2 Tools for Clean Code

12.2 Documentation

12.2.1 Comments and Docstrings

12.2.2 README File

12.2.3 Creating Useful Commit Messages

12.3 Licensing

12.4 Effective Visuals

12.4.1 Make a Statement

12.4.2 Undergo Revision

12.4.3 Are Accessible and Ethical

12.5 Summary

References

CONCLUSION

Appendix A INSTALLING PYTHON

A.1 Download Tutorials for This Book

A.2 Download and Install Anaconda

A.3 Package Management in Anaconda

Appendix B JUPYTER NOTEBOOK. B.1 Running on a Local Machine (New Coders)

B.2 Running on a Remote Server (Advanced)

B.3 Tips for Advanced Users

B.3.1 Customizing Notebooks with Configuration Files

B.3.2 Starting and Ending Python Scripts

B.3.3 Creating Git Commit Templates

Appendix C ADDITIONAL LEARNING RESOURCES

Appendix D TOOLS. D.1 Text Editors and IDEs

D.2 Terminals

Appendix E FINDING, ACCESSING, AND DOWNLOADING SATELLITE DATASETS

E.1 Ordering Data from NASA EarthData

E.2 Ordering Data from NOAA/CLASS

Appendix F ACRONYMS

INDEX

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Special Publications 75

.....

Both GEO and LEO satellites can provide sea surface temperature (SST) observations. The GOES series of GEO satellites provides continuous sampling of SSTs over the Atlantic and Pacific Ocean basins. The MODIS instrument on the Aqua satellite has been providing daily, global SST observations continuously since the year 2000. Visible wavelengths are useful for detecting ocean color, particularly from LEO satellites, which are often observed at very high resolutions.

Additionally, LEO satellites can detect global sea‐surface anomaly parameters. Jason‐3 is a low‐Earth satellite developed as a partnership between EUMETSAT, NOAA, NASA, and CNES. The radar altimeter instrument on Jason‐3 is sensitive to height changes less than 4 cm and completes a full Earth scan every 10 days (Vaze et al., 2010).

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Earth Observation Using Python
Подняться наверх