Probability and Statistical Inference

Probability and Statistical Inference
Автор книги: id книги: 1884642     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13521,3 руб.     (128,7$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119243823 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Updated classic statistics text, with new problems and examples [/i][i]Probability and Statistical Inference, Third Edition helps students grasp essential concepts of statistics and its probabilistic foundations. This book focuses on the development of intuition and understanding in the subject through a wealth of examples illustrating concepts, theorems, and methods. The reader will recognize and fully understand the why and not just the how behind the introduced material. In this Third Edition, the reader will find a new chapter on Bayesian statistics, 70 new problems and an appendix with the supporting R code. This book is suitable for upper-level undergraduates or first-year graduate students studying statistics or related disciplines, such as mathematics or engineering. This Third Edition: Introduces an all-new chapter on Bayesian statistics and offers thorough explanations of advanced statistics and probability topics Includes 650 problems and over 400 examples – an excellent resource for the mathematical statistics class sequence in the increasingly popular «flipped classroom» format Offers students in statistics, mathematics, engineering and related fields a user-friendly resource Provides practicing professionals valuable insight into statistical tools  Probability and Statistical Inference  offers a unique approach to problems that allows the reader to fully integrate the knowledge gained from the text, thus, enhancing a more complete and honest understanding of the topic.

Оглавление

Robert Bartoszynski. Probability and Statistical Inference

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Wiley Series in Probability and Statistics

Probability and Statistical Inference

Preface to Third Edition

Preface to Second Edition

About the Companion Website

Chapter 1 Experiments, Sample Spaces, and Events. 1.1 Introduction

1.2 Sample Space

Example 1.1

Example 1.2

Example 1.3

Example 1.4

Example 1.5

Example 1.6

Example 1.7

Example 1.8 Selection

Example 1.9 Randomized Response

Problems

1.3 Algebra of Events

Example 1.10

Example 1.11 *2

Example 1.12

Example 1.13

Example 1.14

Example 1.15

Problems

1.4 Infinite Operations on Events

Example 1.16

Example 1.17

Example 1.18

Example 1.19

Example 1.20

Example 1.21

Example 1.22

Problems

Notes

Chapter 2 Probability

2.1 Introduction

2.2 Probability as a Frequency

2.3 Axioms of Probability

Example 2.1 Geometric Probability

Example 2.2 Bertrand's Paradox

Solution 1

Solution 2

Solution 3

Example 2.3

Problems

2.4 Consequences of the Axioms

Example 2.5

Solution

Problems

2.5 Classical Probability

Example 2.6

Solution

Problems

2.6 Necessity of the Axioms*

Example 2.7 Densities

2.7 Subjective Probability*

Problems

Note

Chapter 3 Counting. 3.1 Introduction

3.2 Product Sets, Orderings, and Permutations

Example 3.1 Cartesian Products

Example 3.2

Example 3.3 License Plates

Solution

Example 3.4

Solution

Example 3.5 Birthday Problem

Solution

Problems

3.3 Binomial Coefficients

Example 3.6

Corollary 3.3.6

Example 3.7

Solution

Example 3.8

Example 3.9

Example 3.10

Solution

Example 3.11 Matching Problem

Solution

Example 3.12 Ballot Problem

Solution

Example 3.13 Poker

Problems

3.4 Multinomial Coefficients

Example 3.14

Example 3.15

Solution

Problems

Notes

Chapter 4 Conditional Probability, Independence, and Markov Chains. 4.1 Introduction

Example 4.1

Problems

4.2 Conditional Probability

Example 4.2

Solution

Example 4.3

Solution

Example 4.4

Solution

Example 4.5

Solution

Problems

4.3 Partitions; Total Probability Formula

Definition 4.3.1

Example 4.6

Example 4.7

Example 4.8

Solution

Example 4.9

Problems

4.4 Bayes' Formula

Example 4.10

Example 4.11

Solution

Example 4.12

Problems

4.5 Independence

Example 4.13

Solution

Example 4.14

Example 4.15

Example 4.16

Problems

4.6 Exchangeability; Conditional Independence

Example 4.17

Problems

4.7 Markov Chains*

Example 4.18

Example 4.19

Example 4.20 Gambler's Ruin

Example 4.21 Division of Stake in Gambler's Ruin

Example 4.22

Example 4.23

Solution

Example 4.24

Example 4.25

Problems

Note

Chapter 5 Random Variables: Univariate Case. 5.1 Introduction

5.2 Distributions of Random Variables

Example 5.1

Solution

Example 5.2

Example 5.3

Example 5.4

Example 5.5

Problems

5.3 Discrete and Continuous Random Variables

Example 5.6

Example 5.7 Binomial Distribution

Example 5.8

Example 5.9 Poisson Distribution

Example 5.10

Example 5.11

Example 5.12

Example 5.13

Solution

Example 5.14 Uniform Distribution

Example 5.15

Example 5.16

Solution

Example 5.17 Normal Distribution

Example 5.18

Solution

Example 5.19

Example 5.20

PROBLEMS

5.4 Functions of Random Variables

Example 5.21

Example 5.22

Example 5.23

Solution

Example 5.24 Linear Transformations

Example 5.25

Example 5.26

Example 5.27 Square of a Normal Random Variable

Example 5.28 Folded Normal Distribution

PROBLEMS

5.5 Survival and Hazard Functions

Example 5.29

Example 5.30

PROBLEMS

Notes

Chapter 6 Random Variables: Multivariate Case. 6.1 Bivariate Distributions

Example 6.1

Example 6.2

Solution

Example 6.3

Problems

6.2 Marginal Distributions; Independence

Example 6.4

Example 6.5

Solution

Example 6.6

Example 6.7

Example 6.8

Solution

Example 6.9

Example 6.10

Example 6.11

Solution

Problems

6.3 Conditional Distributions

Example 6.12

Example 6.13

Example 6.14

Solution

Example 6.15

Solution

Example 6.16

Problems

6.4 Bivariate Transformations

Example 6.17 Sum of Random Variables

Example 6.18 Sum of Exponential Random Variables

Example 6.19 Sum of Two Uniform Random Variables

Example 6.20

Example 6.21 Product of Two Random Variables

Example 6.22 Borel–Kolmogorov Paradox

Solution 1

Problems

6.5 Multidimensional Distributions

Example 6.23 Trinomial Distribution

Example 6.24

Example 6.25 Model of Grinding

Problems

Chapter 7 Expectation. 7.1 Introduction

7.2 Expected Value

Example 7.1

Example 7.2

Example 7.3 Expected Value of Binomial Distribution

Example 7.4 Expectation of Geometric Distribution

Solution

Example 7.5

Example 7.6 Petersburg Paradox

Solution

Example 7.7

Example 7.8

Solution

Example 7.9

Solution

Example 7.10

Example 7.11

Problems

7.3 Expectation as an Integral*

Riemann Integral

Lebesque Integral

Example 7.12

Riemann–Stieltjes Integral

Example 7.13

Example 7.14

Lebesque–Stieltjes Integral

Lebesque Integral: General Case

7.4 Properties of Expectation

Example 7.15

Example 7.16

Example 7.17

Example 7.18

Example 7.19

Problems

7.5 Moments

Example 7.20

Example 7.21

Example 7.22

Example 7.23

Example 7.24

Example 7.25

Example 7.26

Example 7.27

Example 7.28

Example 7.29

Example 7.30

Example 7.31

Problems

7.6 Variance

Example 7.32

Example 7.33

Example 7.34

Example 7.35

Example 7.36

Example 7.37

Example 7.38 Averaging

Example 7.39 A Foot

Example 7.40 Problem of Design

Solution

Example 7.41

Solution

Example 7.42

Example 7.43

Solution

Example 7.44 Moving Averages

Problems

7.7 Conditional Expectation

Example 7.45

Example 7.46

Example 7.47

Example 7.48

Example 7.49

Example 7.50

Example 7.51

Problems

7.8 Inequalities

Example 7.52

Example 7.53

Example 7.54

Example 7.55 Binomial Distribution

Problems

Chapter 8 Selected Families of Distributions

8.1 Bernoulli Trials and Related Distributions

Binomial Distribution

Example 8.1

Solution

Example 8.2 A Warning

Solution

Example 8.3

Solution

Geometric Distribution

Example 8.4

Example 8.5 Family Planning

Negative Binomial Distribution

Example 8.6

Solution

Problems

8.2 Hypergeometric Distribution

Example 8.7

Solution

Problems

8.3 Poisson Distribution and Poisson Process

Definition 8.3.1

Example 8.8

Solution

Example 8.9

Solution

Example 8.10

Example 8.11

Solution

Example 8.12

Solution

Example 8.13

Solution

Example 8.14

Example 8.15

Solution

Problems

8.4 Exponential, Gamma, and Related Distributions

Problems

8.5 Normal Distribution

Example 8.16

Solution

Definition 8.5.2

Example 8.17

Solution

Example 8.18 Sequential Formation

Example 8.19

Problems

8.6 Beta Distribution

Example 8.20

Example 8.21

Solution

Problems

Notes

Chapter 9 Random Samples. 9.1 Statistics and Sampling Distributions

Example 9.1

Solution

Problems

9.2 Distributions Related to Normal

Problems

9.3 Order Statistics

Example 9.2 Distribution of the Range

Example 9.3

Solution

Example 9.4 Theory of Outliers

Problems

9.4 Generating Random Samples

Example 9.5

Example 9.6

Example 9.7

Problems

9.5 Convergence

Example 9.8

Example 9.9 Laws of Large Numbers

Example 9.10

Example 9.11

Weak Laws of Large Numbers

Strong Laws of Large Numbers

Problems

9.6 Central Limit Theorem

Example 9.12

Solution

Example 9.13

Solution

Example 9.14 Decision Problem

Solution

Example 9.15

Example 9.16

Solution

Problems

Notes

Chapter 10 Introduction to Statistical Inference. 10.1 Overview

Example 10.1

Example 10.2

Example 10.3

Example 10.4

Example 10.5

10.2 Basic Models

Example 10.6

10.3 Sampling

Example 10.7

Example 10.8

Example 10.9 Siblings

Solution

Example 10.10 Renewal Paradox

10.4 Measurement Scales

Example 10.11 Scale of Hardness

Example 10.12

Definition 10.4.1

Notes

Chapter 11 Estimation. 11.1 Introduction

Example 11.1

Example 11.2

Example 11.3

Example 11.4

Solution

11.2 Consistency

Example 11.5

Example 11.6

Example 11.7

Example 11.8

Example 11.9

Problems

11.3 Loss, Risk, and Admissibility

Example 11.10

Example 11.11

Example 11.12

Example 11.13

Example 11.14

Problems

11.4 Efficiency

Example 11.15

Example 11.16

Example 11.17

Example 11.18

Example 11.19

Example 11.20

Problems

11.5 Methods of Obtaining Estimators

Method of Moments Estimators

Example 11.21

Example 11.22

Example 11.23

Solution

Example 11.24

Example 11.25

Maximum Likelihood Estimators

Example 11.26

Example 11.27

Example 11.28

Example 11.29

Example 11.30

Example 11.31

Example 11.32

Example 11.33

Example 11.34

Solution

Example 11.35

Least Squares Estimators

Example 11.36

Example 11.37

Example 11.38 Linear Regression

Robust Estimators

Problems

11.6 Sufficiency

Example 11.39

Example 11.40

Example 11.41

Example 11.42

Example 11.43

Example 11.44

Example 11.45

Example 11.46

Example 11.47

Example 11.48

Solution

Example 11.49

Example 11.50

Example 11.51

Example 11.52

Example 11.53

Example 11.54

Example 11.55

Problems

11.7 Interval Estimation

Confidence Intervals

Example 11.56

Example 11.57

Example 11.58

Example 11.59

Example 11.60

Example 11.61

Example 11.62 Confidence Intervals for Variance

Example 11.63

Example 11.64

Example 11.65

Example 11.66

Bootstrap Intervals

Example 11.67

Problems

Notes

Chapter 12 Testing Statistical Hypotheses. 12.1 Introduction

Example 12.1

Example 12.2

Example 12.3

12.2 Intuitive Background

Example 12.4

Example 12.5

Example 12.6

Example 12.7 Randomization

Example 12.8

Example 12.9

Problems

12.3 Most Powerful Tests

Example 12.10

Example 12.11

Example 12.12

Example 12.13

Example 12.14

Problems

12.4 Uniformly Most Powerful Tests

Example 12.15

Example 12.16

Example 12.17

Example 12.18

Example 12.19

Example 12.20 Bernoulli Trials

Problems

12.5 Unbiased Tests

Example 12.21

Example 12.22

Problems

12.6 Generalized Likelihood Ratio Tests

Example 12.23

Example 12.24

Example 12.25 Paired Observations

Example 12.26

Example 12.27

Problems

12.7 Conditional Tests

Example 12.28

Example 12.29

Example 12.30

Example 12.31

Problems

12.8 Tests and Confidence Intervals

12.9 Review of Tests for Normal Distributions

One‐Sample Procedures

Hypotheses About the Mean, Variance Known

Example 12.32 Generic Problem

Example 12.33

12.9.1.2 Hypotheses About the Mean, Variance Unknown

Example 12.34

Hypotheses About the Variance, Mean Known

Hypotheses About the Variance, Mean Unknown

Example 12.35

12.9.2 Two‐Sample Procedures

Hypotheses About the Means, Variances Known

Hypotheses About the Means, Variances Unknown, but

Hypotheses About the Variances, Means Unknown

Hypotheses About the Variances; One or Both Means Known

Large Sample Tests for Binomial Distribution

Example 12.36

Solution

Example 12.37

Solution

12.10 Monte Carlo, Bootstrap, and Permutation Tests

Example 12.38

Monte Carlo Tests

Example 12.39

Bootstrap Tests

Example 12.40

Permutation Tests

Example 12.41

Problems

Notes

Chapter 13 Linear Models. 13.1 Introduction

Example 13.1

Example 13.2 Analysis of Variance or ANOVA

13.2 Regression of the First and Second Kind

Example 13.3

Example 13.4

Example 13.5

Example 13.6

Example 13.7

Example 13.8

PROBLEMS

13.3 Distributional Assumptions

Example 13.9 Logistic Regression

PROBLEMS

13.4 Linear Regression in the Normal Case

Example 13.10 Is It Good to Be a Royal Prince?

Example 13.11

Example 13.12

PROBLEMS

13.5 Testing Linearity

Example 13.13

PROBLEMS

13.6 Prediction

PROBLEMS

13.7 Inverse Regression

Example 13.14

Solution

PROBLEMS

13.8 BLUE

PROBLEMS

13.9 Regression Toward the Mean

Example 13.15 Psychological Test Scores

13.10 Analysis of Variance

13.11 One‐Way Layout

PROBLEMS

13.12 Two‐Way Layout

PROBLEMS

13.13 ANOVA Models with Interaction

Example 13.16

PROBLEMS

13.14 Further Extensions

Notes

Chapter 14 Rank Methods. 14.1 Introduction

Example 14.1

14.2 Glivenko–Cantelli Theorem

Theorem 14.2.1 (Glivenko–Cantelli)

Proof

Problems

14.3 Kolmogorov–Smirnov Tests. One‐Sample Kolmogorov–Smirnov Test

Theorem 14.3.1 (Kolmogorov and Smirnov)

Example 14.2

Solution

Example 14.3

Two‐Sample Kolmogorov–Smirnov Test

Theorem 14.3.2

Example 14.4

Solution

Problems

14.4 One‐Sample Rank Tests

Example 14.5

Example 14.6 Paired Data

Example 14.7

Theorem 14.4.1

Example 14.8

Problems

14.5 Two‐Sample Rank Tests

Example 14.9

Problems

14.6 Kruskal–Wallis Test

Theorem 14.6.1

Problems

Note

Chapter 15 Analysis of Categorical Data. 15.1 Introduction

Example 15.1

Example 15.2

Example 15.3

15.2 Chi‐Square Tests

Example 15.4

Solution

Example 15.5

Example 15.6

Example 15.7

Example 15.8

Problems

15.3 Homogeneity and Independence

Example 15.9

Example 15.10 Prospective and Retrospective Studies

Problems

15.4 Consistency and Power

Example 15.11

Example 15.12

PROBLEMS

15.5 2 x 2 Contingency Tables

Example 15.13

Solution

Example 15.14

Example 15.15

Solution

Example 15.16

Solution

PROBLEMS

15.6 R x C Contingency Tables

Example 15.17

Example 15.18

Example 15.19

PROBLEMS

Chapter 16 Basics of Bayesian Statistics. 16.1 Introduction

Example 16.1

Example 16.2

16.2 Prior and Posterior Distributions

Example 16.3

Example 16.4

Example 16.5

Solution

Example 16.6

Definition 16.2.1

Example 16.7

Example 16.8

Definition 16.2.2

Example 16.9

Example 16.10

Definition 16.2.3

Example 16.11

Example 16.12

PROBLEMS

16.3 Bayesian Inference

Predictive Distribution

Example 16.13

Point Estimation

Definition 16.3.1

Example 16.14

Example 16.15

Example 16.16

Example 16.17

Example 16.18

Solution

Example 16.19

Example 16.20 Are Birds Bayesians?

Bayesian Intervals

Example 16.21

Example 16.22

Bayesian Hypotheses Testing

Definition 16.3.2

Example 16.23

Example 16.24

Example 16.25

Example 16.26

PROBLEMS

16.4 Final Comments

Notes

APPENDIX A Supporting R Code

Example A.1

Example A.2 Obtaining a Histogram with Fitted Normal Density

Example A.3

Example A.4 The randomization test

APPENDIX B Statistical Tables

Bibliography

Answers to Odd‐Numbered Problems. CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Established by Walter A. Shewhart and Samuel S. Wilks

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay

.....

As already mentioned, the operations of union and intersection can be extended to infinitely many events. Let be an infinite sequence of events. Then,

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Probability and Statistical Inference
Подняться наверх