Nitroalkanes

Nitroalkanes
Автор книги: id книги: 1907561     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 17215,8 руб.     (190,42$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527826773 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Aimed at synthetic organic chemists in academia and industry, the book summarizes recent developments in the preparation of nitroalkanes, their functionalization, and application for the synthesis of important heterocycles, natural products, and bioactive compounds.

Оглавление

Roberto Ballini. Nitroalkanes

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Nitroalkanes. Synthesis, Reactivity, and Applications

About the Authors

Acknowledgments

Introduction

Reference

List of Abbreviations

1 Synthesis of Nitroalkanes. 1.1 Synthesis of Nitroalkanes

1.1.1 Displacement of Alkyl Halides

1.2 Nitration of Mesylates and Tosylates

1.3 Oxidation of Nitrogen Derivatives

1.3.1 Oxidation of Amines

1.3.2 Oxidation of Oximes

1.3.3 Oxidation of Azides

1.4 Reduction of Conjugate Nitroalkenes

1.4.1 Reduction of Nitroalkenes into Nitroalkanes

1.4.2 Stereoselective Reduction of Conjugated Nitroalkenes

1.4.3 Aldehyde Reductive Nitromethylation

1.5 Nitration of Alkanes

1.6 Metal-Catalyzed Alkylation or Arylation of Nitroalkanes

1.6.1 Nitroalkylation of Aryl Halides

1.6.2 Nitroalkylation of Allylic Esters

1.6.3 Nitroalkylation of Allylic Alcohols

1.6.4 Two-Carbon Homologation of Vinyl Triflates and Bromides

References

2 Reduction of the Nitro Group into Amines

2.1 Representative Synthetic Applications of Nitroalkane Reductions

2.1.1 Reduction of Nitroalkanes Obtained via Nitroaldol Reaction

2.1.2 Reduction of Nitroalkanes Obtained via Michael Reaction

References

3 Nitro Group to Carbonyl (Nef Reaction)

3.1 Nef Reaction under Oxidative Conditions. 3.1.1 Method Ox1

3.1.2 Method Ox2

3.1.3 Method Ox3

3.1.4 Method Ox4

3.1.5 Method Ox5

3.1.6 Method Ox6

3.1.7 Method Ox7

3.1.8 Method Ox8

3.1.9 Method Ox9

3.1.10 Method Ox10

3.1.11 Method Ox11

3.1.12 Method Ox12

3.1.13 Method Ox13

3.1.14 Method Ox14

3.1.15 Method Ox15

3.1.16 Method Ox16

3.1.17 Method Ox17

3.2 Nef Reaction Under Reductive Conditions. 3.2.1 Method Red1

3.2.2 Method Red2

3.2.3 Method Red3

3.2.4 Method Red4

3.3 Nef Reaction Under Basic Conditions. 3.3.1 Method Base1

3.3.2 Method Base2

3.4 Other Methods for the Nef Reaction

3.4.1 Method by NaNO2

3.4.2 Method by Me3SiCl

3.4.3 Method by SiO2/TBD

3.5 Synthetic Applications of the Nef Reaction (Representative Examples)

3.5.1 Solvolytic Methods

3.5.2 Oxidative Methods

3.5.3 Reductive Methods

3.5.4 Basic Methods

3.5.5 NaNO2 Methods

References

4 Nitroaldol (Henry) Reaction

4.1 General Catalysts and Promoters

4.1.1 Heterogeneous Catalysts and Promoters

4.1.2 Green Solvents

4.1.2.1 Nitroaldol Reaction in Water

4.1.2.2 Nitroaldol Reaction in Ionic Liquids

4.2 Nitroaldol Condensation

4.2.1 Application of General Henry Reaction

4.3 Asymmetric Henry Reaction

4.4 Aza-Henry Reaction

4.4.1 Aza-Henry Reaction via N-Protected Imines

4.4.2 Aza-Henry Reaction via α-Amidosulfones

References

5 Conjugate Addition of Nitroalkanes to Electron-Poor Alkenes (Michael Reaction)

5.1 General Homogeneous Procedures

5.2 Heterogeneous Procedures

5.3 Michael Reaction under Green Solvents

5.4 Asymmetric Michael Reaction

5.4.1 Asymmetric Michael Reaction with Enones

5.4.2 Asymmetric Michael Reaction with Enals

5.4.3 Asymmetric Michael Reaction with α,β-Unsaturated Esters

5.4.4 Asymmetric Michael Reaction with Conjugate Nitroalkenes

5.4.5 Asymmetric Michael Reaction with Vinyl Sulfones

5.5 Synthetic Applications of Michael Reaction

References

6 Formation of C—C Bond by Coupling Nitroalkanes with Aryl Halides

6.1 Main Procedures for Coupling Nitroalkanes with Aryl Halides

6.2 Application of C—C Coupling Nitroalkanes with Aryl Halides

6.3 Others

References

7 Synthesis and Reactivity of 1,3-Dinitroalkanes

7.1 Synthesis of 1,3-Dinitroalkanes

7.1.1 Asymmetric Synthesis of 1,3-Dinitroalkanes

7.1.2 Synthesis of Symmetric 1,3-Dinitroalkanes

7.2 Synthetic Applications of 1,3-Dinitroalkanes

7.2.1 Synthesis of 1,3-Diamines

7.2.2 Synthesis of Carbocycles

7.2.2.1 Synthesis of Dinitrocyclohexanols

7.2.2.2 Synthesis of Bicyclo[3.3.1]nonanes

7.2.3 Synthesis of Benzene Derivatives

7.2.3.1 Synthesis of Acetophenones and Benzoates

7.2.3.2 Synthesis of Arylamines

7.2.3.3 Synthesis of Polyfunctionalized Phenols

7.2.3.4 Synthesis of Nitrobenzenes

References

8 Formation of Carbon=Carbon Double Bonds via Nitrous Acid Elimination (NAE)

8.1 Synthesis of α,β-Unsaturated Carbonyl Derivatives

8.2 Nitroaldol Reaction, Nitrous Acid Elimination vs Water Elimination

8.3 Synthesis of Cyclic Compounds

8.3.1 Synthesis of Aromatic Rings

8.3.1.1 Synthesis of Benzene Ring

8.3.1.2 Synthesis of Furan Ring

8.3.1.3 Synthesis of Pyrrole Ring

8.3.1.4 Synthesis of Isoxazole Ring

8.3.2 Synthesis of Heterocyclic (Non-Aromatic) Rings

8.3.2.1 Synthesis of Dihydropyranol Ring

8.3.2.2 Synthesis of Butyrolactone Ring

8.3.2.3 Synthesis of Pyrrolidine Ring

8.3.2.4 Synthesis of Succinic Anhydride Ring

8.3.3 Synthesis of Cyclopentenone Ring

8.4 Synthesis of Polyenes

8.4.1 Asymmetric Synthesis of Electron-Poor Alkenes

References

9 α-Nitrocycloalkanones, Synthesis, and Reactivity

9.1 Synthesis of Cyclic α-Nitro Ketones

9.2 Ring Cleavage of Cyclic α-Nitro Ketones

9.2.1 Cleavage to ω-Nitro Acids and ω-Nitro Esters

9.2.2 Cleavage to Methyl ω-Oxoalkanoate

9.2.3 Reductive Cleavage of α-Nitrocycloalkanones

9.2.4 Oxidative Cleavage of α-Nitrocycloalkanones

9.2.4.1 Cleavage into α,ω-Dicarboxylic Acids

9.2.4.2 Cleavage to α,ω-Dicarboxylic Acids Dialkyl Esters

9.2.4.3 Cleavage to α,ω-Dicarboxylic Acids Monomethyl Esters

9.2.4.4 Cleavage to Methyl ω,ω-Dihalo-ω-nitroalkanoates

9.2.5 Reaction of α-Nitrocycloalkanones with Organometallic Reagents

9.3 α-Nitrocycloalkanones and Michael Reaction

9.4 α-Nitrocycloalkanones and Henry Reaction

9.5 “Zip Reaction”

9.5.1 Synthesis of Bicyclic Macrolactones

9.5.2 Synthesis of 12-Oxotetradecan-14-lactam

9.5.3 Asymmetric Synthesis of Bicyclic Hemiketals

9.6 Arylation of Nitrocycloalkanones

9.6.1 Synthesis of Benzo- and Naphtho-fused Bicyclo[n.3.1]structures

9.6.2 α-Arylation of 2-Nitrocycloalkanones

References

10 Acyclic α-Nitro Ketones: Synthesis and Reactivity

10.1 Synthesis of α-Nitro Ketones

10.1.1 Synthesis of α-Nitro Ketones from Henry Reaction

10.1.2 Synthesis of α-Nitro Ketones from Carboxylic Acid Derivatives

10.1.3 Synthesis of α-Nitro Ketones from Alkenes

10.1.4 Synthesis of α-Nitro Ketones from Silyl Enol Ethers

10.2 Reactivity of Acyclic α-Nitro Ketones

10.2.1 Replacement of the Nitro Group of α-Nitro Ketones

10.2.1.1 Replacement of the Nitro Group with Hydrogen

10.2.1.2 Tandem Denitration–Deoxygenation

10.2.1.3 Replacement of the Nitro Group with Deuterium

10.2.1.4 Replacement of the Nitro Group with Phenylthio Group

10.2.2 α-Nitro Ketones to Conjugated Enones

10.2.3 α-Nitro Ketones into Nitroalkanols

10.2.4 Chemoselective Reduction of α-Nitro Ketones to Amino Ketones

10.2.5 Alkylation of α-Nitro Ketones

10.2.5.1 α1-Alkylation of α-Nitro Ketones

10.2.5.2 α-Allylation of α-Nitro Ketones

10.2.5.3 α-Alkylation of α-Nitro Ketones by Michael Reaction Followed by Nitrous Acid Elimination

10.2.5.4 α-Alkylation of α-Nitro Ketones by the Mannich (or Aza-Henry) Reaction

10.3 Other Reactions

10.3.1 Synthesis of Furoxans

10.3.2 Synthesis of α-Nitro-α-Diazocarbonyl Derivatives

10.3.3 Synthesis of Acylthioamides

References

11 Nitro Cyclopropanes: Synthesis and Applications

11.1 Synthesis of Nitro Cyclopropanes

11.1.1 Synthesis of Nitro Cyclopropanes from Bromine Derivatives

11.1.2 Synthesis of Nitro Cyclopropanes from Conjugate Nitroalkenes

11.1.3 Synthesis of Nitro Cyclopropanes from Alkenes

11.1.4 Intramolecular Synthesis of Nitro Cyclopropanes from γ-Nitro Alcohols (the Mitsunobu Displacement)

11.2 Applications of Nitrocyclopropanes

11.2.1 Nitrocyclopropanes and Henry Reaction: Synthesis of Novel HIV-1 Protease Inhibitor

11.2.2 Cyclopropane Ring Expansion

References

12 Nitroalkanes as Source of Dicarbonyls

12.1 1,2-Dicarbonyl Derivatives

12.2 1,3-Dicarbonyl Derivatives

12.3 1,4-Dicarbonyl Derivatives

12.3.1 1,4-Diketones

12.3.2 γ-Ketoesters and γ-Ketoacids

12.4 1,5-Dicarbonyl Derivatives

References

13 Nitroalkanes as Source of Spiroketals

13.1 1,6-Dioxaspiro[4.4]nonanes

13.2 1,6-Dioxaspiro[4.5]undecanes

13.3 1,6-Dioxaspiro[4.6]undecanes

13.4 1,7-Dioxaspiro[5.5]undecanes and 1,7-Dioxaspiro[5.6]dodecanes

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Roberto Ballini

Alessandro Palmieri

.....

The procedure allows good yields with aldoximes, while fails to react with ketoximes. On the other hand, ketoximes can be converted into secondary nitroalkanes, following the Olah method [24], oxidizing ketoximes with sodium perborate in glacial acetic acid. However, this procedure failed with aldoximes.

An interesting conversion of both aldoximes and ketoximes to the corresponding nitroalkanes has been realized by a complementary synthetic route of the UHP method. In fact, the oxidation achieved with “Benz-Mo,” the Mo(VI) oxidiperoxo complex [Benz-MoO(O2)2]−(t-Bu)4N+ in acetonitrile, affords good yields of both primary and secondary nitroalkanes (Scheme 1.14) [25].

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Nitroalkanes
Подняться наверх