Fundamentals of Analytical Toxicology

Fundamentals of Analytical Toxicology
Автор книги: id книги: 1887763     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14340,3 руб.     (139,8$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119122371 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Fundamentals of Analytical Toxicology is an integrated introduction to the analysis of drugs, poisons, and other foreign compounds in biological and related specimens. Assuming only basic knowledge of analytical chemistry, this invaluable guide helps trainee analytical toxicologists understand the principles and practical skills involved in detecting, identifying, and measuring a broad range of compounds in various biological samples. Clear, easy-to-read chapters provide detailed information on topics including sample collection and preparation, spectrophotometric and luminescence techniques, liquid and gas-liquid chromatography, and mass spectrometry including hyphenated techniques. This new edition contains thoroughly revised content that reflects contemporary practices and advances in analytical methods. Expanding the scope of the 1995 World Health Organization (WHO) basic analytical toxicology manual, the text includes coverage of separation science, essential pharmacokinetics, xenobiotic absorption, distribution and metabolism, clinical toxicological and substance misuse testing, therapeutic drug monitoring, trace elements and toxic metals analysis, and importantly the clinical interpretation of analytical results. Written by a prominent team of experienced practitioners, this volume: Focuses on analytical, statistical, and pharmacokinetic principles Describes basic methodology, including colour tests and immunoassay and enzyme-based assays Outlines laboratory operations, such as method validation, quality assessment, staff training, and laboratory accreditation Follows IUPAC nomenclature for chemical names and recommended International Non-proprietary Name (rINN) for drugs and pesticides Includes discussion of 'designer drugs' (novel pharmaceutical substances NPS) Fundamentals of Analytical Toxicology: Clinical and Forensic, 2nd Edition is an indispensable resource for advanced students and trainee analytical toxicologists across disciplines, such as clinical science, analytical chemistry, forensic science, pathology, applied biology, food safety, and pharmaceutical and pesticide development.

Оглавление

Robin Whelpton. Fundamentals of Analytical Toxicology

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

FUNDAMENTALS OF ANALYTICAL TOXICOLOGY. Clinical and Forensic

Preface

Notes

Health and Safety

Nomenclature, Symbols, and Conventions

Uniform Resource Locators

Amount Concentration and Mass Concentration

Acknowledgements

List of Abbreviations

1 Analytical Toxicology: Overview. 1.1 Introduction

1.2 Modern analytical toxicology

1.2.1 Analytical methods

Box 1.1 Opiates, opioids, and opium

1.2.2 Systematic toxicological analysis

1.2.3 Ethanol and other volatile substances

1.2.4 Trace elements and toxic metals

1.3 Provision of analytical toxicology services

1.3.1 Samples and sampling

1.3.2 Choice of analytical method

1.3.3 Method validation and implementation

1.3.4 Quality control and quality assessment

1.4 Applications of analytical toxicology

1.4.1 Clinical toxicology

1.4.2 Forensic toxicology

1.4.3 Testing for substance misuse

1.4.4 Therapeutic drug monitoring

1.4.5 Occupational and environmental toxicology

1.5 Summary

References

2 Sample Collection, Transport, and Storage. 2.1 Introduction

2.2 Clinical samples and sampling. 2.2.1 Health and safety

2.2.2 Clinical sample types

2.2.3 Blood and blood fractions. 2.2.3.1 Arterial blood

2.2.3.2 Venous blood

2.2.3.3 Serum

2.2.3.4 Plasma

Box 2.1 Calculating relative centrifugal force

2.2.3.5 Blood cells

Erythrocyte:plasma distribution

2.2.3.6 Dried blood spots

2.2.3.7 Volumetric microsampling

2.2.4 Urine

2.2.5 Stomach contents

2.2.6 Faeces

2.2.7 Tissues

2.3 Guidelines for sample collection for analytical toxicology

Box 2.2 Information that should accompany a request for general toxicological analysis

2.3.1 Sample collection and preservation

2.3.2 Blood

2.3.2.1 Collection of blood post-mortem

2.3.3 Urine

2.3.4 Stomach contents

2.3.5 Oral fluid

2.3.6 Sweat

2.3.7 Exhaled air

2.3.8 Cerebrospinal fluid

2.3.9 Vitreous humour

2.3.10 Synovial fluid

2.3.11 Pericardial fluid

2.3.12 Intraosseous fluid

2.3.13 Liver

2.3.14 Bile

2.3.15 Other tissues

2.3.16 Insect larvae

2.3.17 Keratinaceous tissues (hair and nail)

Box 2.3 Protocol for collection of head hair for testing for drug exposure

2.3.18 Bone

2.3.19 Injection sites

2.3.20 Scene residues

2.4 Sample transport, storage, and disposal

Box 2.4 Chain of custody documents

Box 2.5 Guidance on freezer storage of samples

2.5 Common interferences

2.6 Summary

References

3 Basic Laboratory Operations

3.1 Introduction

Box 3.1 Stages in analytical toxicology laboratory operation

3.1.1 Reagents and standard solutions

Box 3.2 Example of weights of morphine salts required to make 1 litre of a 100 μmol L−1 solution of morphine

3.1.2 Reference compounds

3.1.3 Preparation and storage of calibration solutions

3.2 Aspects of quantitative analysis. 3.2.1 Analytical error

3.2.1.1 Confidence intervals

3.2.2 Minimizing random errors

3.2.2.1 Preparation of a solution of known concentration

3.2.3 Accuracy and precision

3.2.3.1 Assessing precision and accuracy

3.2.3.2 Detecting systematic error (fixed bias)

3.2.3.3 Identifying sources of variation: analysis of variance

3.2.3.4 Measurement uncertainty

3.2.4 Calibration graphs

3.2.4.1 Linear regression

3.2.4.2 Testing for linearity

3.2.4.3 Weighted linear regression

3.2.4.4 Non-linear calibration

3.2.4.5 Residuals and standardized residuals

3.2.4.6 Blank samples and the intercept

3.2.4.7 Method of standard additions

3.2.4.8 Limits of detection and quantitation

3.2.4.9 Curve fitting and choice of equation

3.2.4.10 Single-point calibration

3.2.5 Batch analyses

3.2.6 Random access analysis

3.3 Use of internal standards

3.3.1 Advantages of internal standardization. 3.3.1.1 Reproducibility of injection volume

Box 3.3 Some requirements for an internal standard

3.3.1.2 Instability of the detection system

3.3.1.3 Pipetting errors and evaporation of extraction solvent

3.3.1.4 Extraction efficiency

3.3.1.5 Derivatization and non-stoichiometric reactions

3.3.2 Internal standard availability

3.3.3 External calibration

Box 3.4 Points to be considered when using external calibration

3.3.4 Potential disadvantages of internal standardization

3.3.5 Quantity of internal standard added

3.4 Method comparison

3.4.1 Bland–Altman plots

3.5 Non-parametric statistics

Box 3.5 Grubbs' test for outliers

3.5.1 Sign tests

3.5.1.1 Wilcoxon signed rank test

3.5.2 Runs test

3.5.3 Mann–Whitney U-test

Box 3.6 Procedure for calculating U-values

3.5.4 Spearman rank correlation

3.5.5 Non-parametric regression

Box 3.7 Steps for Theil's incomplete method for non-parametric calibration curves

3.6 Quality control and quality assessment

3.6.1 Quality control charts

3.6.1.1 Shewhart charts

3.6.1.2 Cusum charts

3.6.1.3 J-chart

3.6.2 External quality assessment

3.6.3 Toxicology external quality assessment schemes

3.7 Operational considerations. 3.7.1 Staff training

3.7.2 Recording and reporting results

3.8 Summary

References

4 Aspects of Sample Preparation. 4.1 Introduction

Box 4.1 Aims of sample preparation

Box 4.2 Modes of sample preparation

4.2 Modes of sample preparation

4.2.1 Protein precipitation

4.2.2 Liquid–liquid extraction

Box 4.3 Properties of the ‘ideal’ extraction solvent

4.2.2.1 pH-Controlled liquid–liquid extraction

4.2.2.2 Ion-pair extraction

4.2.2.3 Supported liquid extraction

Box 4.4 Use of Isolute columns to extract 12 drugs from whole blood prior to LC-MS/MS (Kristoffersen et al., 2018 – reproduced with permission of Elsevier)

4.2.2.4 Immobilized coating extraction

4.2.3 Solid phase extraction

Box 4.5 LC-MS assay of plasma clozapine and norclozapine using ICE (Couchman et al., 2016 – reproduced with permission of Wolters Kluwer Health, Inc.)

4.2.3.1 Types of stationary phase

4.2.4 Solid phase microextraction

4.2.5 Liquid phase microextraction

4.2.6 Supercritical fluid extraction

4.2.7 Accelerated solvent extraction

4.3 Plasma protein binding

Box 4.6 Considerations in the measurement of plasma protein binding

4.3.1 Ultrafiltration

4.3.2 Equilibrium dialysis

4.4 Hydrolysis of conjugated metabolites

4.5 Extraction of drugs from tissues

4.6 Summary

References

5 Colour Tests, and Spectrophotometric and Luminescence Techniques. 5.1 Introduction

5.2 Colour tests in toxicology

Box 5.1 Colour tests in toxicology

5.3 Colour tests for pharmaceuticals and illicit drugs

5.4 UV/Visible spectrophotometry

5.4.1 The Beer–Lambert law

Box 5.2 Beer–Lambert law: factors causing non-linearity

5.4.2 Instrumentation

Box 5.3 Operation of a single-beam spectrophotometer

5.4.2.1 Derivative spectrophotometry

5.4.3 Spectrophotometric assays

Box 5.4 Visible and UV spectrophotometry

5.4.3.1 Salicylates in plasma or urine

5.4.3.2 Carboxyhaemoglobin in whole blood

Box 5.5 Measurement of salicylates in plasma or urine

Box 5.6 Measurement of carboxyhaemoglobin

5.4.3.3 Cyanide in whole blood by microdiffusion

Box 5.7 Microdiffusion

Box 5.8 Cyanide measurement using microdiffusion

5.5 Fluorescence and phosphorescence

5.5.1 Intensity of fluorescence and quantum yield

5.5.2 Instrumentation

5.5.3 Fluorescence assays

5.5.3.1 Fluorescence measurement of quinine

Box 5.9 Fluorescence assay for plasma quinine

5.6 Chemiluminescence

5.6.1 Instrumentation

5.6.2 Chemiluminescence assays

5.7 Infrared and Raman spectroscopy

5.7.1 Instrumentation

5.7.2 Applications

5.8 Summary

References

6 Immunoassays and Related Assays. 6.1 Introduction

6.2 Basic principles of competitive binding assays

Box 6.1 Immunoassays: practicalities

6.2.1 Antibody formation

6.2.2 Selectivity

6.2.3 Performing the assay

6.2.3.1 Classical radioimmunoassay

6.2.3.2 Modern radioimmunoassay

Box 6.2 Radioimmunoassay

6.2.4 Non-isotopic immunoassay

Box 6.3 Non-isotopic immunoassays in analytical toxicology

6.2.5 Assay sensitivity and selectivity

6.2.6 Immunoassay development

6.3 Heterogeneous immunoassays

6.3.1 Tetramethylbenzidine reporter system

6.3.2 Antigen-labelled competitive ELISA

6.3.3 Antibody-labelled competitive ELISA

Box 6.4 Enzyme linked immunosorbent assay

6.3.4 Sandwich ELISA

6.3.5 Lateral flow competitive ELISA

6.3.6 Chemiluminescent immunoassay

6.4 Homogenous immunoassays

6.4.1 Enzyme-multiplied immunoassay technique

Box 6.5 Enzyme-multiplied immunoassay technique

6.4.2 Fluorescence polarization immunoassay (FPIA)

Box 6.6 Fluorescence polarization immunoassay

6.4.3 Cloned enzyme donor immunoassay

Box 6.7 Cloned enzyme donor immunoassay

6.5 Microparticulate and turbidimetric immunoassays

6.5.1 Microparticle enzyme immunoassay (MEIA)

6.5.2 Chemiluminescent magnetic immunoassay (CMIA)

6.6 Assay calibration, quality control, and quality assessment

6.6.1 Immunoassay calibration

6.6.2 Drug screening

6.7 Interferences and assay failures

6.7.1 Measurement of plasma digoxin after Fab antibody fragment administration

6.8 Aptamer-based assays

6.9 Enzyme-based assays

6.9.1 Paracetamol

6.9.2 Ethanol

6.9.3 Anticholinesterases

6.10 Summary

References

7 Separation Science: Theoretical Aspects. 7.1 General introduction

7.2 Theoretical aspects of chromatography

7.2.1 Analyte phase distribution

7.2.2 Column efficiency

7.2.3 Zone broadening

7.2.3.1 Multiple path and eddy diffusion

7.2.3.2 Longitudinal diffusion

7.2.3.3 Resistance to mass transfer

7.2.4 Kinetic plots

7.2.5 Extra-column contributions to zone broadening

7.2.6 Temperature programming and gradient elution

7.2.7 Selectivity

7.2.8 Peak asymmetry

7.3 Measurement of analyte retention. 7.3.1 Planar chromatography

Box 7.1 Calculation of corrected hRf values

7.3.2 Elution chromatography

7.4 Summary

References

8 Planar Chromatography. 8.1 Introduction

Box 8.1 Application of TLC in analytical toxicology

8.2 Qualitative thin-layer chromatography

Box 8.2 Practical aspects of TLC in analytical toxicology

8.2.1 Thin-layer plates

8.2.2 Sample application

8.2.3 Developing the chromatogram

8.2.4 Visualizing the chromatogram

Box 8.3 Visualizing reagents for acidic and basic extracts (see Figure 8.3)

8.2.5 Interpretation of thin-layer chromatograms

Box 8.4 Analytical toxicology: interpretation and storage of TLC data

8.2.6 TIAFT-DFG Rf data compilation

8.2.7 Toxi-Lab

8.3 Quantitative thin-layer chromatography

8.3.1 Forced-flow planar chromatography

8.3.2 Quantitative high-performance thin-layer chromatography

8.4 Summary

References

9 Gas Chromatography. 9.1 Introduction

Box 9.1 Advantages of GC in analytical toxicology

Box 9.2 Limitations of GC in analytical toxicology

9.2 Instrumentation

9.2.1 Injectors and injection technique

9.2.1.1 Cryofocusing/thermal desorption

9.2.2 Detectors for gas chromatography

9.2.2.1 Thermal conductivity detection

9.2.2.2 Flame ionization detection

9.2.2.3 Nitrogen/phosphorus detection

9.2.2.4 Electron capture detection

9.2.2.5 Pulsed discharge detection

Box 9.3 Disadvantages of 63Ni electron-capture detectors

9.2.2.6 Flame photometric detection

9.2.2.7 Atomic emission detection

9.2.2.8 Chemiluminescent nitrogen detection

9.2.2.9 Fourier transform infra-red detection

9.2.2.10 Vacuum UV detection

9.3 Columns and column packings

9.3.1 Stationary phases

9.3.2 Packed columns

9.3.3 Capillary columns

Box 9.4 GC capillary column selection

9.3.4 Multidimensional gas chromatography

9.4 Headspace and ‘purge and trap’ analysis

9.5 Formation of artefacts in gas chromatography

9.6 Derivatization for gas chromatography

Box 9.5 Summary of reasons for derivatization in gas chromatography

9.7 Chiral separations

9.8 Summary

Box 9.6 Summary of the use of GC in analytical toxicology

References

10 Liquid Chromatography. 10.1 Introduction

Box 10.1 Advantages of liquid chromatography in analytical toxicology

Box 10.2 Limitations of liquid chromatography in analytical toxicology

10.2 General considerations

10.2.1 The column

10.2.2 Column configuration

10.2.3 Column oven

10.2.4 The eluent

10.2.5 The pump

10.2.6 Sample introduction

10.2.7 System operation

10.3 Detection in liquid chromatography

10.3.1 UV/Visible absorption detection

10.3.2 Fluorescence detection

10.3.3 Chemiluminescence detection

10.3.4 Electrochemical detection

10.3.5 Chemiluminescent nitrogen detection

10.3.6 Aerosol-based detectors

10.3.6.1 Evaporative light scattering detection

10.3.6.2 Condensation nucleation light scattering detection

10.3.6.3 Charged aerosol detection

10.3.7 Radioactivity detection

Box 10.3 Practical considerations in the use of radioactivity detectors

10.3.8 Chiral detection

10.3.9 Post-column modification

10.3.10 Immunoassay detection

10.4 Columns and column packings

10.4.1 Column packings

10.4.1.1 Chemical modification of silica

10.4.1.2 Bonded-phase selection

10.4.1.3 Stability of silica packings

10.4.1.4 Monolithic columns

10.4.1.5 Surface porous particles

10.4.1.6 Hybrid particle columns

10.4.1.7 Restricted access media

10.5 Modes of liquid chromatography

10.5.1 Normal-phase chromatography

10.5.2 Hydrophilic interaction liquid chromatography

10.5.3 Reverse-phase chromatography

10.5.4 Ion-exchange chromatography

10.5.5 Ion-pair chromatography

10.5.6 Affinity chromatography

10.5.7 Size exclusion chromatography

10.5.8 Semi-preparative and preparative chromatography

10.6 Chiral separations

10.6.1 Chiral stationary phases. 10.6.1.1 Amylose and cellulose polymers

10.6.1.2 Crown ethers

10.6.1.3 Cyclodextrins

10.6.1.4 Ligand exchange chromatography

10.6.1.5 Macrocyclic glycopeptides

10.6.1.6 Pirkle brush-type phases

10.6.1.7 Protein-based phases

10.6.2 Chiral eluent additives

Box 10.4 Advantages and disadvantages of eluent additives in chiral LC

10.7 Derivatives for liquid chromatography

10.7.1 Fluorescent derivatives

10.7.2 Chiral derivatives

Box 10.5 Requirements for an ideal chiral derivatization reagent

10.8 Use of liquid chromatography in analytical toxicology

Box 10.6 Summary of the use of liquid chromatography in analytical toxicology

10.8.1 Acidic and neutral compounds

Box 10.7 Considerations in the liquid chromatography of acidic and neutral compounds

10.8.2 Basic drugs and quaternary ammonium compounds

Box 10.8 Liquid chromatography of basic compounds

10.8.2.1 Non-aqueous ionic eluent systems

10.8.3 Chiral analysis

10.9 Summary

References

11 Supercritical Fluid Chromatography. 11.1 Introduction

Box 11.1 Supercritical fluid chromatography

Box 11.2 Supercritical fluid chromatography versus gas chromatography

Box 11.3 Supercritical fluid chromatography versus liquid chromatography

11.2 General considerations

11.2.1 The pump

11.2.2 The eluent

11.3 Detection in supercritical fluid chromatography

11.4 Columns and column packings

11.5 Chiral separations

11.6 Toxicological and forensic applications

11.7 Summary

References

12 Capillary Electrophoretic Techniques. 12.1 Introduction

Box 12.1 Preparation, conditioning, and storage of capillaries for electrophoresis

12.2 Theoretical aspects. 12.2.1 Electrophoretic mobility

12.2.2 Efficiency and zone broadening

12.2.3 Joule heating

12.2.4 Electrodispersion

12.2.5 Adsorption of analyte onto the capillary wall

12.2.6 Reproducibility of migration time

12.3 Sample injection in capillary electrophoresis

12.3.1 Hydrodynamic injection

12.3.2 Electrokinetic injection

12.3.3 Sample ‘stacking’

12.4 Detection in capillary electrophoresis

12.5 Other capillary electrokinetic modes

12.5.1 Micellar electrokinetic capillary chromatography

12.5.2 Capillary electrochromatography

12.6 Capillary electrophoretic techniques in analytical toxicology

12.6.1 Chiral separations

12.7 Summary

References

13 Mass Spectrometry. 13.1 Introduction

Box 13.1 Mass spectrometry in analytical toxicology

13.2 Instrumentation

Box 13.2 Mass spectrometry: types of mass analyzers

Box 13.3 Mass spectrometry: resolving power and mass error

13.2.1 Sector instruments

13.2.2 Quadrupole instruments

13.2.3 Ion trap quadrupole instruments

13.2.4 Controlled fragmentation

13.2.5 Quadrupole ion trap

13.2.6 Time-of-flight instruments

13.2.7 Ion cyclotron resonance

13.2.8 Orbitrap mass analyzer

13.3 Gas chromatography-mass spectrometry

13.3.1 Analyte ionization in gas chromatography-mass spectrometry

13.3.1.1 Electron ionization

Box 13.4 Modes of ionization in gas chromatography-mass spectrometry

13.3.1.2 Chemical ionization

13.3.2 Gas chromatography-combustion-isotope ratio mass spectrometry

13.4 Liquid chromatography-mass spectrometry

Box 13.5 Some advantages and potential disadvantages of LC-MS

13.4.1 Analyte ionization in liquid chromatography-mass spectrometry

Box 13.6 Some modes of ionization in liquid chromatography-mass spectrometry

13.4.1.1 Electrospray and ionspray ionization

13.4.1.2 Atmospheric pressure chemical ionization

13.4.1.3 Atmospheric pressure photoionization

13.5 Supercritical fluid chromatography-mass spectrometry

13.6 Capillary electrophoresis-mass spectrometry

13.7 Direct introduction mass spectrometry

13.7.1 Flow injection analysis-mass spectrometry

13.7.2 High-performance thin-layer chromatography-mass spectrometry

13.7.2.1 Elution-based approaches

13.7.2.2 Desorption-based approaches

13.7.3 Desorption electrospray ionization mass spectrometry

13.7.4 Paperspray ionization-mass spectrometry

13.7.5 Laser diode thermal desorption mass spectrometry

13.7.6 Matrix assisted laser desorption ionization mass spectrometry

13.8 Presentation of mass spectral data

13.9 Interpretation of mass spectra

13.10 Quantitative mass spectrometry

13.10.1 Stable isotope-labelled internal standards

13.10.2 Assay calibration

13.10.3 Isotopic internal calibration

13.11 Mass spectrometry imaging

13.12 Summary

References

14 Ion Mobility Spectrometry. 14.1 Introduction

Box 14.1 Advantages of ion mobility spectrometry

14.1.1 Interactions with buffer gas

14.2 Theoretical aspects

14.3 Types of ion mobility spectrometry

14.3.1 Drift time ion mobility spectroscopy

14.3.2 High field asymmetric waveform ion mobility spectroscopy

14.3.3 Travelling wave ion mobility spectrometry

14.3.4 Trapped ion mobility spectrometry

Box 14.2 Advantages of trapped ion mobility spectrometry

14.4 Resolving power

14.5 Interfacing ion mobility spectrometry

14.5.1 Selected ion flow tube mass spectrometry

14.6 Applications of ion mobility spectrometry in analytical toxicology. 14.6.1 Direct analysis

14.6.2 Interfaced techniques

14.6.3 Chiral separations

14.7 Summary

References

15 Absorption, Distribution, Metabolism, and Excretion of Xenobiotics. 15.1 Introduction

15.2 Movement of drugs and other xenobiotics around the body

15.2.1 Passive diffusion

15.2.1.1 pH-Partition relationship

15.2.1.2 Other physiochemical properties

15.2.2 Carrier-mediated transport

15.3 Routes of administration. 15.3.1 Oral dosage

15.3.1.1 Pre-systemic metabolism

15.3.2 Intravenous injection

15.3.3 Intramuscular and subcutaneous injection

15.3.4 Sublingual and rectal administration

15.3.5 Intranasal administration

15.3.6 Transdermal administration

15.3.7 Inhalation

15.3.8 Other routes of administration

15.4 Distribution

15.4.1 Ion-trapping

15.4.2 Binding to macromolecules

15.4.2.1 Plasma protein binding

15.4.3 Carrier-mediated transport

15.5 Metabolism

15.5.1 Phase 1 metabolism

15.5.1.1 The cytochrome P450 family

15.5.1.2 Other phase 1 oxidases

15.5.1.3 Enzymatic reductions

15.5.1.4 Hydrolysis

15.5.2 Phase 2 reactions

15.5.2.1 D-Glucuronidation

15.5.2.2 O-Sulfation and N-acetylation

15.5.2.3 O-, N- and S-Methylation

15.5.2.4 Conjugation with glutathione

15.5.2.5 Amino acid conjugation

15.5.3 Stereoselective metabolism

15.5.4 Metabolic reactions of toxicological importance. 15.5.4.1 Oxidative dealkylation

15.5.4.2 Hydroxylation

15.5.4.3 S- and N-oxidation

15.5.4.4 Oxidative dehalogenation

15.5.4.5 Desulfuration

15.5.4.6 Trans-sulfuration and trans-esterification

15.5.5 Enzyme induction and inhibition. 15.5.5.1 Enzyme induction

15.5.5.2 Enzyme inhibition

15.6 Excretion

15.6.1 The kidney

15.6.1.1 Tubular secretion

15.6.1.2 Renal excretion of metabolites

15.6.2 Biliary excretion

15.6.2.1 Recycling of xenobiotics

15.7 Pharmacogenetics and pharmacogenomics

15.7.1 Cytochrome P450

15.7.2 Atypical pseudocholinesterase

15.7.3 Alcohol dehydrogenase and aldehyde dehydrogenase

15.7.4 Thiopurine methyltransferase

15.7.5 N-Acetyltransferase

15.7.6 UDP-Glucuronosyltransferases

15.8 Summary

References

16 Pharmacokinetics. 16.1 Introduction

16.2 Fundamental concepts

16.2.1 Rates, rate constants, and orders of reaction

16.2.1.1 First-order elimination

16.2.1.2 Zero-order elimination

16.2.2 Dependence of plasma half-life on volume of distribution and clearance

16.2.2.1 Apparent volume of distribution

16.2.2.2 Clearance

16.3 Absorption and elimination. 16.3.1 First-order absorption

16.3.2 Quantification of F

16.3.3 Maximum concentration (Cmax)

16.4 Drug accumulation

16.4.1 Intravenous infusion

16.4.1.1 Loading doses

16.4.2 Multiple dosage

16.5 Sustained-release preparations

16.6 Non-linear pharmacokinetics

16.6.1 Example of non-linear kinetics in overdose

16.7 Multi-compartment models

16.7.1 Calculation of rate constants and volumes of distribution

16.7.2 Multiple-compartment models in analytical toxicology

16.8 Non-compartmental methods

16.9 Factors affecting pharmacokinetic parameters

16.9.1 Gastrointestinal contents and gastrointestinal motility

16.9.2 Age

16.9.2.1 Effect of age on renal function

16.9.3 Sex

16.10 Disease

16.11 Pharmacokinetics and the interpretation of results. 16.11.1 Back-calculation of dose or time of dose

16.11.1.1 How much substance was administered?

16.11.1.2 When was the substance administered?

16.11.1.3 Prediction of ethanol concentrations

16.12 Summary

References

17 Toxicology Testing at the Point of Contact. 17.1 Introduction

17.2 Use of point of contact testing

Box 17.1 Questions when deciding to implement point of contact testing

17.2.1 Samples and sample collection

Box 17.2 Advantages and disadvantages of using oral fluid to detect substance misuse

17.3 Toxicology testing at the point of contact. 17.3.1 Ethanol

17.3.1.1 Breath ethanol

17.3.1.2 Oral fluid ethanol

17.3.2 Substance misuse

17.3.2.1 Oral fluid testing

17.3.2.2 Autopsy specimens

17.4 Interferences and adulterants

17.5 Quality assessment

17.6 Summary

References

18 Laboratory Testing for Substance Misuse. 18.1 Introduction

18.1.1 Matrix and sampling. 18.1.1.1 Urine

18.1.1.2 Oral fluid

18.1.1.3 Hair

18.1.1.4 Blood

18.1.1.5 Exhaled air

18.1.1.6 Sweat

18.1.2 ‘Cut-off’ concentrations

18.2 Urine testing

Box 18.1 Urine testing for substance misuse: summary

18.2.1 Sample adulteration

18.2.2 Analytical methods

18.2.2.1 Immunoassay

18.2.2.2 Chromatographic methods

18.2.2.3 Assay calibration and acceptance criteria

18.2.3 ‘Cut-off’ concentrations

18.3 Oral fluid testing

18.3.1 Sample collection and storage

18.3.1.1 Oral fluid collection devices

18.3.2 Road-side testing procedures and ‘cut-off’ concentrations

18.3.3 Analytical methods

Box 18.2 Steps in the analysis of drugs and metabolites in oral fluid

18.3.4 ‘Cut-off’ concentrations

18.4 Blood testing. 18.4.1 Legislative limits drugs and driving

18.4.2 Analytical methods

Box 18.3 Steps in the analysis of drugs in whole blood

18.5 Hair testing

18.5.1 Surface contamination

Box 18.4 Steps in the analysis of drugs and metabolites in hair

18.5.2 Analytical methods

18.5.3 Assay calibration and quality assessment

Box 18.5 SoHT assay validation, IQC and EQA recommendations

18.5.4 ‘Cut-off’ concentrations

18.5.5 Ethanol markers

18.5.5.1 Ethyl glucuronide

18.5.5.2 Fatty acid ethyl esters

18.5.6 Children

18.6 Breath testing

Box 18.6 Sample preparation of exhaled air condensate on an Empore disc C18 for methadone detection

18.6.1 Collection devices

18.7 Sweat testing

18.8 Summary

References

19 General Analytical Toxicology. 19.1 Introduction

19.2 Gas chromatography

19.2.1 Qualitative analyses

19.2.2 Quantitative analyses

19.2.2.1 Ethanol and other volatiles

Box 19.1 HS-GC-FID of blood volatiles (Flanagan & Fisher, 2013–reproduced with permission of Elsevier)

19.2.2.2 Carbon monoxide and cyanide

19.3 Gas chromatography-mass spectrometry

19.3.1 Qualitative analysis. 19.3.1.1 Targeted analysis

19.3.1.2 Systematic toxicological analysis

Box 19.2 STA of urine by GC-MS: sample preparation

19.3.2 Quantitative analysis

Box 19.3 LLE for quantification in plasma by GC-MS or LC-MS

Box 19.4 SPE for quantification in plasma by GC-MS or LC-MS

19.4 Liquid chromatography

19.4.1 Qualitative analysis

19.5 Liquid chromatography-mass spectrometry

19.5.1 Qualitative analysis. 19.5.1.1 Targeted analysis

19.5.1.2 Systematic toxicological analysis

Box 19.5 Sample preparation for LC-MS

19.5.2 Quantitative analysis

19.5.2.1 Batch analysis

19.5.2.2 Emergency toxicology

19.6 Liquid chromatography-high resolution mass spectrometry

19.6.1 Qualitative analysis

19.6.1.1 Targeted analysis

19.6.1.2 Systematic toxicological analysis

19.6.2 Quantitative analysis

Box 19.6 Assay of apixaban, dabigatran, edoxaban, and rivaroxaban in plasma

19.7 Summary

References

20 Therapeutic Drug Monitoring. 20.1 Introduction

Box 20.1 Indications for therapeutic drug monitoring

Box 20.2 Biological effect monitoring

20.2 Sample collection

20.3 Sample types. 20.3.1 Blood and blood fractions

20.3.1.1 Dried blood spots

20.3.1.2 Volumetric microsampling devices

20.3.2 Urine

20.3.3 Oral fluid

20.3.4 Keratinaceous samples

20.3.5 Other alternative matrices

20.4 Analytical methods

20.5 Factors affecting interpretation of results

20.6 Gazetteer

20.6.1 Antiasthmatics

20.6.2 Anticoagulants

20.6.3 Antiepileptic drugs

20.6.4 Anti-infectives. 20.6.4.1 Antibiotics

20.6.4.2 Antifungal drugs

20.6.4.3 Antimalarials

20.6.4.4 Antiretroviral drugs

20.6.5 Anti-inflammatory drugs

20.6.5.1 Therapeutic antibodies

20.6.6 Antineoplastic drugs

20.6.6.1 Chemotherapeutic agents

20.6.6.2 Protein kinase inhibitors

20.6.6.3 Therapeutic antibodies

20.6.7 Cardioactive drugs

20.6.7.1 Digoxin

20.6.7.2 Other cardioactive drugs

20.6.8 Immunosuppressants

20.6.9 Psychoactive drugs

20.6.9.1 Lithium

20.6.9.2 Antidepressants

20.6.9.3 Antipsychotics

20.7 Summary

References

21 Trace Elements and Toxic Metals. 21.1 Introduction

21.2 Sample collection and storage

21.3 Sample preparation

21.3.1 Analysis of tissues

21.3.2 Analyte enrichment

21.4 Atomic spectrometry

21.4.1 General principles of optical emission spectroscopy

21.4.2 Atomic absorption spectrometry

21.4.2.1 Flame atomization

Box 21.1 Advantages and disadvantages of pneumatic nebulization

21.4.2.2 Electrothermal atomization

21.4.2.3 Sources of error

Box 21.2 Actions to match sample and calibrator viscosity in the measurement of serum copper and zinc by FAAS

Box 21.3 Measurement of lead in blood by ETAAS

21.4.3 Atomic emission and atomic fluorescence spectrometry. 21.4.3.1 Optical emission spectrometry

21.4.3.2 Atomic fluorescence spectrometry

21.4.4 Inductively coupled plasma-mass spectrometry

21.4.4.1 Ion sources

21.4.4.2 Mass analyzers

21.4.4.3 Interferences

21.4.5 Vapour generation approaches

21.4.5.1 Hydride generation

21.4.5.2 Mercury vapour generation

Box 21.4 Measurement of mercury in urine by cold vapour generation AAS

21.4.6 X-Ray fluorescence

21.5 Colorimetry and fluorimetry

21.6 Electrochemical methods. 21.6.1 Anodic stripping voltammetry

21.6.2 Ion-selective electrodes

21.7 Catalytic methods

21.8 Neutron activation analysis

21.9 Chromatographic methods

21.9.1 Chromatography

21.9.2 Speciation

21.10 Quality assessment

21.11 Summary

References

22 Clinical Interpretation of Analytical Results. 22.1 Introduction

22.2 Clinical toxicology

22.2.1 Pharmacokinetics and the interpretation of results

22.3 Forensic toxicology

22.3.1 Drug-facilitated assault

22.3.2 Fabricated illness

22.3.3 Post-mortem toxicology

22.4 Gazetteer

22.4.1 Alcohols

22.4.1.1 Ethanol

22.4.1.2 Ethylene glycol and methanol

22.4.2 Anabolic steroids

22.4.3 Antidepressants

22.4.4 Antidiabetic drugs

22.4.4.1 Insulin and C-peptide

22.4.4.2 Insulin analogues

22.4.4.3 LC-MS of insulin and insulin analogues

22.4.5 Antiepileptics

22.4.6 Antipsychotics

22.4.7 Barbiturates

22.4.8 Benzodiazepines

22.4.9 Carbon monoxide

22.4.10 Cannabinoids

22.4.10.1 Synthetic cannabinoids

22.4.11 Cardioactive drugs

22.4.12 Diuretics and laxatives

22.4.13 Hallucinogens

22.4.13.1 N-Benzylphenethylamines

22.4.13.2 2,5-Dimethoxy-substituted phenethylamines

22.4.13.3 Mescaline and psilocybin

22.4.14 γ-Hydroxybutyrate and γ-butyrylactone

22.4.15 Inorganic anions

22.4.15.1 Azide

22.4.15.2 Cyanide and thiocyanate

22.4.15.3 Nitrite

22.4.15.4 Phosphide

22.4.15.5 Sulfide

22.4.16 Ketamine

22.4.17 Non-opioid analgesics

22.4.18 Opioids

22.4.18.1 Buprenorphine

22.4.18.2 Codeine/codeine analogues

22.4.18.3 Diamorphine/morphine

22.4.18.4 Fentanyl

22.4.18.5 Methadone

22.4.18.6 Novel synthetic opioids

22.4.18.7 Tramadol

22.4.19 Organophosphorus compounds

22.4.20 Phosphodiesterase 5 inhibitors

22.4.21 Stimulants and related compounds

22.4.21.1 Amfetamine and metamfetamine

22.4.21.2 Cocaine

22.4.21.3 MDMA and related compounds

22.4.22 Trace elements/toxic metals

22.4.23 Volatile substances

22.5 Sources of further information

22.6 Summary

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

Robert J. Flanagan

.....

In assessing the evidence of the analytical toxicologist, courts of law are concerned especially with the experience of the analyst, the origin and condition of the samples, and the analytical methods used. The ability to prove continuous and proper custody of the specimen is important. It used to be argued that evidence from a minimum of two unrelated analytical methods should be employed before a tentative identification is accepted, but with the advent of GC-MS and LC-MS methods this is often no longer the case, the MS data being regarded as orthogonal to the chromatographic data. The results should be presented together with sufficient information to ensure accurate interpretation of the findings by a coroner, magistrate, judge, and/or jury. There is always the possibility of an independent examination by a further expert instructed by another party in the case.

The value of blood, breath, or urinary measurements in the diagnosis of ethanol misuse and in monitoring abstinence is clear. Screening for substance misuse in urine is also valuable in monitoring illicit drug taking in dependent patients and guards against prescribing controlled drugs for patients who are not themselves drug dependent. Some substances disappear from biological samples very rapidly and, depending on the time between administration and sample collection, the parent compound may not be detectable. Sometimes, however, metabolite identification can be used to demonstrate systemic exposure to a particular drug. 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) is monitored to demonstrate systemic exposure to methadone, for example. Other samples, such as oral fluid, exhaled air, sweat, and meconium can also provide useful samples for specific purposes (Pleil, 2016; Chapter 18).

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Fundamentals of Analytical Toxicology
Подняться наверх