Paint Analysis

Paint Analysis
Автор книги: id книги: 2039599     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16186,8 руб.     (147,72$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: Readbox publishing GmbH Дата добавления в каталог КнигаЛит: ISBN: 9783748604341 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The market demands modern, high-performance, flawless paints that possess specified properties. Where deviations from set points occur, the cause must be investigated and the error must be remedied. What «standard methods» don't disclose is why a particular coating either meets or fails to meet a requirement. Thus the author presents modern analytical techniques and their applications in the coatings industry that answer further complex questions. The information in this book can be used for performing failure analysis, production control and quality control, and also meet the requirements of modern high-level quality management. An excellent combination of theory and practice for formulators, paint engineers and applied technologists seeking a sound basic introduction to instrumental paint analysis and concrete answers to everyday problems.

Оглавление

Roger Dietrich. Paint Analysis

Foreword

Part IGeneral information about paint analysis

1The surface

3.1.1.1Definition of the term surface

2Why paint analysis?

3Relevance of modern analytical techniques to paint analysis

4General considerations

5Chemical mapping

5.1Infrared microscopy mapping

5.2TOF-SIMS imaging

5.3SEM-EDS mapping

6Depth profiling

7Instrumentation

1The bumpy road to knowledge

2The analytical procedure

2.1Inquiry

2.2Inspection. 2.2.1Macroscopic inspection

2.2.2Microscopic inspection

2.3Informed guess

2.4Instrument selection

2.5Investigation

2.6Interpretation

2.7Iterance

2.8Implementation

2.9Incumbency

3The power of sampling. 3.1The role of sampling in the analytical procedure

3.2Random sampling and representativeness

13.2.1.1 Example 1: Bernoulli experiment

13.2.1.2Example 2: Zero defect sampling

13.2.1.3 Example 3: Random sampling of binders

3.3Targeted sampling

3.4Non-destructive sampling. 3.4.1Wipe sampling

13.4.1.1 Wiping procedure (wet wiping)

13.4.1.2 Wiping procedure (dry wiping):

3.4.2Rinse sampling

3.4.3Abrasive sampling

3.5Typical sampling failures

3.5.1Wrong sample collection

3.5.2Non-representative sampling

3.5.3 Selecting the wrong amount of samples

3.5.4Application of a wrong sampling procedure

3.5.5Inappropriate sampling tools and containers

3.5.6Insufficient storing and shipping of samples

3.6Micro­sampling

4Paint failures and. their analytical approach. 4.1Some considerations on failure reasons

4.1.1Insufficient workpiece preparation

14.1.1.1Surface treatment of metal substrates

14.1.1.2 Polymer surface cleaning and pretreatment

4.1.2Handling failures

4.1.3Application conditions

4.1.4Environment and climate

4.2Investigation of adhesion failures

4.2.1Delamination due to substrate contamination

4.2.2Adhesion defects caused by migration processes

14.2.2.1Example: Paint adhesion failure of a 2K PU paint

4.2.3Delamination caused by moulding conditions

4.2.4Delamination due to application faults

14.2.4.1 Example: Delamination of a 2K polyester polyurethane paint from a polymer surface

4.2.5Delamination due to insufficient pretreatment

14.2.5.1 Example: Delamination of a coating from a PC-PET surface

4.3Paint cratering and “fisheyes”

4.3.1Cratering caused by contamination of the paint material

4.3.2Craters and pinholes caused by substrate contaminants

4.3.3Craters caused by paint additive agglomeration

14.3.3.1Example 1: KTL flat craters due to additive enrichment

14.3.3.2Example 2: Powder coating craters caused by a filler

4.3.4Cratering caused by the application conditions

4.4Bubbles and blisters

4.5Discolouration

4.6Hazes and stains

14.2.1.1Example: Polyurethane high gloss coating showing a haze

4.7Paint spots

14.2.1.1Example: Paint spot on a polymer substrate

4.8Orange peel

4.9References

Part IIIQuality control and process analysis

1 Quality control of raw material

1.1 Binders

1.1.1 Identity check

1.1.2Detection of trace contaminants

1.2 Solvents

1.3 Pigments. and fillers

2Quality control of paint production

2.1Analysis of filter residues

2.1.1SEM/EDS analysis of filter residues

2.1.2FT-IR analysis of filter residues

2.2Analysis of fogging residues

2.3Quality check of finished and. semi-finished products

2.3.1ATR-FT-IR screening

17.3.1.1Example: White automotive paint

2.3.2TOF-SIMS analysis

2.3.3Headspace GC-MS analysis

2.4Paint quality tests

3Field analysis

3.1Process analysis of paint shops

3.2Aerosol analysis

3.3Operating test

3.4Sampling of the painting air

3.5Monitoring of pretreatment steps

3.6Investigation of the degree of. crosslinking in 2-pack paints

18.2.1.1Example: Binder/hardener ratio of 2-pack polyester-polyurethane paint

3.7Investigation of paint additive migration

3.8Marine and aircraft coating inspection

3.9Handhelds and portables

3.10References

1 Optical light microscopy

1.1Extended focus imaging (EFI)

1.2Differential interference contrast (DIC)

2Fluorescence microscopy

3 Infrared spectroscopy

3.1Physical background

3.2Characteristic absorptions

3.3Instrumentation

3.4Sample preparation

3.5Spectrum representation

3.6Quantification

3.7 Data analysis and evaluation

3.7.1Data processing

3.7.2Use of databases

4 Surface infrared spectroscopy

4.1 ATR-FT-IR spectroscopy

4.1.1Physical background

4.1.2 Depth of penetration

4.1.3 Information depth

4.1.4 Effective path length

4.1.5 Quantification

4.1.6 Detection limit

4.1.7 Instrumentation

23.1.7.1 ATR crystal material

4.1.8Sample preparation

4.2Reflection infrared spectroscopy

4.2.1Physical background

4.2.2External reflection

23.2.2.1Reflection from thin films on reflecting substrates

23.2.2.2Reflection from thin films on non-metallic surfaces

4.2.3Instrumentation

4.3Diffuse reflection spectroscopy

4.3.1Physical background. 23.3.1.1Lambert`s law

23.3.1.2 The Kubelka-Munk theory

4.3.2Penetration depth

4.3.3Influences of variable parameters on the spectrum

4.3.4Sample preparation

4.3.5Instrumentation

4.3.6Quantification

4.3.7Optimization of the measuring parameters

4.3.8Repeatability

5Infrared microscopy

5.1Instrumentation

5.2Sample preparation

5.3Infrared microscopy, infrared transmission mode

5.4 Infrared microscopy, reflection mode

24.2.1.1Application examples: smooth polymer or coating surfaces

24.2.1.2Analysis of cross sections

5.5Infrared microscopy, ATR mode

5.6Line-scan und mapping analysis

24.2.1.1Application example paint spots

6Raman spectroscopy

6.1.1Physical background

6.1.2Instrumentation

6.1.3Advantages and limitations

6.1.4Quantification

6.1.5Applications. 25.0.5.1 Paint failure analysis

25.0.5.2Forensic paint investigation

25.0.5.3Identification of unknown micro-particles

7Time-of-flight secondary. ion mass spectrometry

7.1.1Physical background. 26.0.6.1a) Excitation of the surface

26.0.6.2 b) Detection of the secondary ions

7.1Instrumentation

7.2Calibration and mass resolution

7.3 Sample preparation

7.4Spectral evaluation

7.5Imaging mode

7.6 Quantification

7.7Summary

7.8Applications

26.2.1.1 Studies of laquers, binders and resins

26.2.1.2 Quality control of raw materials

26.2.1.3 Structural analysis

8 Scanning electron microscopy

8.1Physical background

27.2.1.1Secondary electrons

27.2.1.2 Back-scattered electrons

27.2.1.3 Characteristic X-ray radiation

8.2Lateral resolution

8.3 Instrumentation

8.4Sample condition

27.2.1.1 Information depth

9Electron microanalysis

9.1Physical background

9.2 Quantification

9.3 Detection limits

9.4EDS-Imaging

9.5Applications

10X-ray photoelectron spectroscopy

10.1Physical background

10.2 Information depth

10.3 Lateral resolution

10.4Information retrieval

10.5 Quantification

10.6Instrumentation

10.7Applications

10.8Technical data

11GC-MS

11.1Physical background of GC

11.2Headspace

30.2.1.1Instrumentation

30.2.1.2Sample preparation

30.2.1.3GC separation

30.2.1.4Detection

11.3Data evaluation

11.4Application. 30.2.1.1Example: Comparison of two paint batches

12Thin layer chromatography TLC-ATR-FT-IR

12.1General principle

12.2Separation procedure

12.3Identification

12.4Performance parameters of selected methods

13References

Author

Acknowledgements

Index

Отрывок из книги

European Coatings Library

Roger Dietrich

.....

The results of both analyses are listed in Table II.2, and seem to be unequal and contradictory. How can this happen? Did one or even both laboratories work inaccurately? The answer is “No!” Rather, the method selection limits the results to one aspect of the real composition.

One of the laboratories used the TOF-SIMS method for the analysis of the extracts from the activated carbons, because it has an extremely high sensitivity to PWIS (paint wetting impairment substances). It was deliberately accepted that volatile compounds are not detected by the TOF-SIMS method.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Paint Analysis
Подняться наверх