PID Passivity-Based Control of Nonlinear Systems with Applications

PID Passivity-Based Control of Nonlinear Systems with Applications
Автор книги: id книги: 2147680     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (127,44$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119694182 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the foundational and advanced subjects associated with proportional-integral-derivative controllers from leading authors in the field  In  PID Passivity-Based Control of Nonlinear Systems with Applications , expert researchers and authors Drs. Romeo Ortega, Jose Guadalupe Romero, Pablo Borja, and Alejandro Donaire deliver a comprehensive and detailed discussion of the most crucial and relevant concepts in the analysis and design of proportional-integral-derivative controllers using passivity techniques. The accomplished authors present a formal treatment of the recent research in the area and offer readers practical applications of the developed methods to physical systems, including electrical, mechanical, electromechanical, power electronics, and process control.  The book offers the material with minimal mathematical background, making it relevant to a wide audience. Familiarity with the theoretical tools reported in the control systems literature is not necessary to understand the concepts contained within. You’ll learn about a wide range of concepts, including disturbance rejection via PID control, PID control of mechanical systems, and Lyapunov stability of PID controllers.  Readers will also benefit from the inclusion of:  A thorough introduction to a class of physical systems described in the port-Hamiltonian form and a presentation of the systematic procedures to design PID-PBC for them An exploration of the applications to electrical, electromechanical, and process control systems of Lyapunov stability of PID controllers Practical discussions of the regulation and tracking of bilinear systems via PID control and their application to power electronics and thermal process control A concise treatment of the characterization of passive outputs, incremental models, and Port Hamiltonian and Euler-Lagrange systems Perfect for senior undergraduate and graduate students studying control systems,  PID Passivity-Based Control  will also earn a place in the libraries of engineers who practice in this area and seek a one-stop and fully updated reference on the subject.

Оглавление

Romeo Ortega. PID Passivity-Based Control of Nonlinear Systems with Applications

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

PID Passivity‐Based Control of Nonlinear Systems with Applications

Author Biographies

Preface

Bibliography

Acknowledgments

Acronyms

Notation

1 Introduction

2 Motivation and Basic Construction of PID Passivity‐Based Control

2.1 ‐Stability and Output Regulation to Zero

Lemma 2.1

Proposition 2.1:

Remark 2.1:

Remark 2.2:

2.2 Well‐Posedness Conditions

Lemma 2.2

Remark 2.3:

2.3 PID‐PBC and the Dissipation Obstacle

2.3.1 Passive Systems and the Dissipation Obstacle

2.3.2 Steady‐State Operation and the Dissipation Obstacle

Proposition 2.2:

Remark 2.4:

Remark 2.5:

2.4 PI‐PBC with and Control by Interconnection

Bibliography

Notes

3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples

3.1 Tuning of the PI Gains for Control of Induction Motors

3.1.1 Problem Formulation

3.1.2 Change of Coordinates

‐Coordinates

State‐Space Representation

A Remark on Direct FOC

3.1.3 Tuning Rules and Performance Intervals

Passive Subsystems Decomposition

Global Stability

Proposition 3.1

Performance Intervals

3.1.4 Concluding Remarks

3.2 PI‐PBC of a Fuel Cell System

3.2.1 Control Problem Formulation

Proposition 3.2

3.2.2 Limitations of Current Controllers and the Role of Passivity

3.2.3 Model Linearization and Useful Properties. Proposition 3.3

Proposition 3.4

3.2.4 Main Result. Proposition 3.5

3.2.5 An Asymptotically Stable PI‐PBC

Proposition 3.6

3.2.6 Simulation Results

3.2.7 Concluding Remarks and Future Work

Bibliography

Notes

4 PID‐PBC for Nonzero Regulated Output Reference

4.1 PI‐PBC for Global Tracking

4.1.1 PI Global Tracking Problem

Assumption 4.1:

Remark 4.1:

4.1.2 Construction of a Shifted Passive Output

Lemma 4.1:

Remark 4.2:

Remark 4.3:

4.1.3 A PI Global Tracking Controller

Corollary 4.1:

Remark 4.4:

Remark 4.5:

4.2 Conditions for Shifted Passivity of General Nonlinear Systems

4.2.1 Shifted Passivity Definition

Remark 4.6:

Remark 4.7:

4.2.2 Main Results. Proposition 4.1:

Proposition 4.2:

Remark 4.8:

Remark 4.9:

Remark 4.10:

Remark 4.11:

4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems

4.3.1 Problems Formulation

4.3.2 Shifted Passivity

Assumption 4.2

Assumption 4.3

Proposition 4.3:

4.3.3 Shifted Passifiability via Output‐Feedback

Proposition 4.4:

4.3.4 Stability of the Forced Equilibria

Proposition 4.5:

Remark 4.12:

4.3.5 Application to Quadratic pH Systems

Proposition 4.6:

Corollary 4.2

4.4 PI‐PBC of Power Converters

4.4.1 Model of the Power Converters

Remark 4.13:

4.4.2 Construction of a Shifted Passive Output. Proposition 4.7:

Remark 4.14:

4.4.3 PI Stabilization

Proposition 4.8:

Remark 4.15:

4.4.4 Application to a Quadratic Boost Converter

Remark 4.16:

Remark 4.17:

4.5 PI‐PBC of HVDC Power Systems

4.5.1 Background

4.5.2 Port‐Hamiltonian Model of the System

4.5.3 Main Result

Proposition 4.9:

Proposition 4.10:

Remark 4.18:

4.5.4 Relation of PI‐PBC with Akagi's PQ Method

4.6 PI‐PBC of Wind Energy Systems

4.6.1 Background

4.6.2 System Model

Wind Turbine

Maximum Power Extraction

Turbine Model

PMSG and Electrical Part

The Overall System

4.6.3 Control Problem Formulation

Lemma 4.2

Remark 4.19:

4.6.4 Proposed PI‐PBC

Assumption 4.4

Proposition 4.11:

Remark 4.20:

Remark 4.21:

4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors

4.7.1 Background

4.7.2 Motor Models

Standard Model

Incremental Model

4.7.3 Problem Formulation

Remark 4.22:

Remark 4.23:

4.7.4 Main Result

Lemma 4.3

Proposition 4.12:

4.7.5 Conclusions and Future Research

Bibliography

Notes

5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems

5.1 Parameterization of All Passive Outputs

Proposition 5.1

5.2 Some Particular Cases

Proposition 5.2

5.3 Two Additional Remarks

5.4 Examples

5.4.1 A Level Control System

5.4.2 A Microelectromechanical Optical Switch

Bibliography

Note

6 Lyapunov Stabilization of Port‐Hamiltonian Systems

6.1 Generation of Lyapunov Functions

6.1.1 Basic PDE

Proposition 6.1:

Remark 6.1:

6.1.2 Lyapunov Stability Analysis

Proposition 6.2:

Remark 6.2:

Remark 6.3:

6.2 Explicit Solution of the PDE

6.2.1 The Power Shaping Output

Proposition 6.3:

Remark 6.4:

6.2.2 A More General Solution

Assumption 6.1:

Proposition 6.4:

Remark 6.5:

6.2.3 On the Use of Multipliers

Proposition 6.5:

6.3 Derivative Action on Relative Degree Zero Outputs

6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC

Proposition 6.6:

6.3.2 Projection of the New Passive Output

Proposition 6.7:

6.3.3 Lyapunov Stabilization with the New PID‐PBC

Assumption 6.2:

Proposition 6.8:

Remark 6.6:

Remark 6.7:

6.4 Examples

6.4.1 A Microelectromechanical Optical Switch (Continued)

6.4.2 Boost Converter

6.4.3 Two‐Dimensional Controllable LTI Systems

Remark 6.8:

6.4.4 Control by Interconnection vs. PI‐PBC

6.4.5 The Use of the Derivative Action

Bibliography

Notes

7 Underactuated Mechanical Systems

7.1 Historical Review and Chapter Contents

7.1.1 Potential Energy Shaping of Fully Actuated Systems

7.1.2 Total Energy Shaping of Underactuated Systems

7.1.3 Two Formulations of PID‐PBC

7.2 Shaping the Energy with a PID

7.3 PID‐PBC of Port‐Hamiltonian Systems

7.3.1 Assumptions on the System

Assumption 7.1

7.3.2 A Suitable Change of Coordinates

Lemma 7.1:

Remark 7.1:

7.3.3 Generating New Passive Outputs

Lemma 7.2:

Remark 7.2:

Remark 7.3:

Remark 7.4:

7.3.4 Projection of the Total Storage Function

Assumption 7.2:

Lemma 7.3:

7.3.5 Main Stability Result

Assumption 7.3:

Proposition 7.1:

Remark 7.5:

Remark 7.6:

Remark 7.7:

7.4 PID‐PBC of Euler‐Lagrange Systems

7.4.1 Passive Outputs for Euler–Lagrange Systems

Lemma 7.4:

Remark 7.8:

7.4.2 Passive Outputs for Euler–Lagrange Systems in Spong's Normal Form

Lemma 7.5:

Remark 7.9:

7.5 Extensions

7.5.1 Tracking Constant Speed Trajectories

Proposition 7.2:

7.5.2 Removing the Cancellation of

Assumption 7.4:

Lemma 7.6:

Remark 7.10:

7.5.3 Enlarging the Class of Integral Actions

7.6 Examples

7.6.1 Tracking for Inverted Pendulum on a Cart

7.6.2 Cart‐Pendulum on an Inclined Plane

7.7 PID‐PBC of Constrained Euler–Lagrange Systems

7.7.1 System Model and Problem Formulation

Problem Formulation

Remark 7.11:

7.7.2 Reduced Purely Differential Model

Proposition 7.3:

Remark 7.12:

Remark 7.13:

7.7.3 Design of the PID‐PBC

Lemma 7.7:

Lemma 7.8:

7.7.4 Main Stability Result

Proposition 7.4:

Remark 7.14:

Remark 7.15:

Remark 7.16:

7.7.5 Simulation Results

7.7.6 Experimental Results

Bibliography

Notes

8 Disturbance Rejection in Port‐Hamiltonian Systems

8.1 Some Remarks on Notation and Assignable Equilibria

8.1.1 Notational Simplifications

8.1.2 Assignable Equilibria for Constant

8.2 Integral Action on the Passive Output

Proposition 8.1:

8.3 Solution Using Coordinate Changes

8.3.1 A Feedback Equivalence Problem

Definition 8.1

Remark 8.1:

Remark 8.2:

8.3.2 Local Solutions of the Feedback Equivalent Problem

Proposition 8.2:

Remark 8.3:

8.3.3 Stability of the Closed‐Loop

Proposition 8.3:

Remark 8.4:

8.4 Solution Using Nonseparable Energy Functions

8.4.1 Matched and Unmatched Disturbances

Matched Disturbances

Remark 8.5:

Remark 8.6:

Proposition 8.4:

Unmatched Disturbances

Proposition 8.5:

Matched and Unmatched Disturbances

Proposition 8.6:

8.4.2 Robust Matched Disturbance Rejection

Decomposition of the Damping Matrix

Remark 8.7:

Control Objective

New Closed‐Loop pH Structure

Proposition 8.7:

Stability

Proposition 8.8:

8.5 Robust Integral Action for Fully Actuated Mechanical Systems

Lemma 8.1:

Lemma 8.2:

Remark 8.8:

Lemma 8.3:

Remark 8.9:

Remark 8.10:

8.6 Robust Integral Action for Underactuated Mechanical Systems

8.6.1 Standard Interconnection and Damping Assignment PBC

Formulation of the Robust IDA‐PBC Problem

Remark 8.11:

8.6.2 Main Result

Proposition 8.9:

8.7 A New Robust Integral Action for Underactuated Mechanical Systems

8.7.1 System Model

8.7.2 Coordinate Transformation

8.7.3 Verification of Requisites

8.7.4 Robust Integral Action Controller

8.8 Examples

8.8.1 Mechanical Systems with Constant Inertia Matrix

8.8.2 Prismatic Robot

8.8.3 The Acrobot System

8.8.4 Disk on Disk System

8.8.5 Damped Vertical Take‐off and Landing Aircraft

Bibliography

Notes

Appendix A Passivity and Stability Theory for State‐Space Systems

A.1 Characterization of Passive Systems

Definition A.1

Proposition A.1

Theorem A.1

A.2 Passivity Theorem

Definition A.2

Proposition A.2

Proposition A.3

A.3 Lyapunov Stability of Passive Systems

Definition A.3

Definition A.4

Theorem A.2

Bibliography

Note

Appendix B Two Stability Results and Assignable Equilibria. B.1 Two Stability Results

Theorem B.1

Theorem B.2

B.2 Assignable Equilibria. Definition B.1

Proposition B.1

Bibliography

Appendix C Some Differential Geometric Results

C.1 Invariant Manifolds

Definition C.1

Lemma C.1

C.2 Gradient Vector Fields. Definition C.2

Lemma C.2

C.3 A Technical Lemma. Definition C.3

Lemma C.3

Bibliography

Appendix D Port–Hamiltonian Systems

D.1 Definition of Port‐Hamiltonian Systems and Passivity Property. Definition D.1

Proposition D.1

D.2 Physical Examples. D.2.1 Mechanical Systems

D.2.2 Electromechanical Systems

D.2.3 Power Converters

D.3 Euler–Lagrange Models

D.4 Port‐Hamiltonian Representation of GAS Systems

Proposition D.2

Bibliography

Index

a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

r

s

t

u

v

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Romeo OrtegaInstituto Tecnológico Autónomo de México

José Guadalupe RomeroInstituto Tecnológico Autónomo de México

.....

Notice that for pH systems, see Definition D.1, the dissipation obstacle translates into

(2.5)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу PID Passivity-Based Control of Nonlinear Systems with Applications
Подняться наверх