Handbook of Regression Analysis With Applications in R

Handbook of Regression Analysis With Applications in R
Автор книги: id книги: 1887788     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 12549,8 руб.     (122,35$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119392484 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

H andbook and reference guide for students and practitioners of statistical regression-based analyses in R   Handbook of Regression Analysis  with Applications in R, Second Edition  is a comprehensive and up-to-date guide to conducting complex regressions in the R statistical programming language. The authors’ thorough treatment of “classical” regression analysis in the first edition is complemented here by their discussion of more advanced topics including time-to-event survival data and longitudinal and clustered data.  The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include:  Regularization methods Smoothing methods Tree-based methods In the new edition of the  Handbook , the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website.  Of interest to undergraduate and graduate students taking courses in statistics and regression, the  Handbook of Regression Analysis  will also be invaluable to practicing data scientists and statisticians.

Оглавление

Samprit Chatterjee. Handbook of Regression Analysis With Applications in R

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES IN PROBABILITY AND STATISTICS

Handbook of Regression Analysis With Applications in R

Preface to the Second Edition

Preface to the First Edition. How to Use This Book

CHAPTER ONE Multiple Linear Regression

1.1 Introduction

1.2 Concepts and Background Material. 1.2.1 THE LINEAR REGRESSION MODEL

1.2.2 ESTIMATION USING LEAST SQUARES

1.2.3 ASSUMPTIONS

1.3 Methodology

1.3.1 INTERPRETING REGRESSION COEFFICIENTS

1.3.2 MEASURING THE STRENGTH OF THE REGRESSION RELATIONSHIP

1.3.3 HYPOTHESIS TESTS AND CONFIDENCE INTERVALS FOR β

1.3.4 FITTED VALUES AND PREDICTIONS

1.3.5 CHECKING ASSUMPTIONS USING RESIDUAL PLOTS

1.4 Example — Estimating Home Prices

1.5 Summary

KEY TERMS

CHAPTER TWO Model Building

2.1 Introduction

2.2 Concepts and Background Material

2.2.1 USING HYPOTHESIS TESTS TO COMPARE MODELS

2.2.2 COLLINEARITY

2.3 Methodology

2.3.1 MODEL SELECTION

2.3.2 EXAMPLE — ESTIMATING HOME PRICES (CONTINUED)

2.4 Indicator Variables and Modeling Interactions

2.4.1 EXAMPLE — ELECTRONIC VOTING AND THE 2004 PRESIDENTIAL ELECTION

2.5 Summary

KEY TERMS

CHAPTER THREE Diagnostics for Unusual Observations

3.1 Introduction

3.2 Concepts and Background Material

3.3 Methodology. 3.3.1 RESIDUALS AND OUTLIERS

3.3.2 LEVERAGE POINTS

3.3.3 INFLUENTIAL POINTS AND COOK'S DISTANCE

3.4 Example — Estimating Home Prices (continued)

3.5 Summary

KEY TERMS

CHAPTER FOUR Transformations and Linearizable Models

4.1 Introduction

4.2 Concepts and Background Material: The Log‐Log Model

4.3 Concepts and Background Material: Semilog Models

4.3.1 LOGGED RESPONSE VARIABLE

4.3.2 LOGGED PREDICTOR VARIABLE

4.4 Example — Predicting Movie Grosses After One Week

4.5 Summary

KEY TERMS

CHAPTER FIVE Time Series Data and Autocorrelation

5.1 Introduction

5.2 Concepts and Background Material

5.3 Methodology: Identifying Autocorrelation

5.3.1 THE DURBIN‐WATSON STATISTIC

5.3.2 THE AUTOCORRELATION FUNCTION (ACF)

5.3.3 RESIDUAL PLOTS AND THE RUNS TEST

5.4 Methodology: Addressing Autocorrelation. 5.4.1 DETRENDING AND DESEASONALIZING

5.4.2 EXAMPLE — E‐COMMERCE RETAIL SALES

5.4.3 LAGGING AND DIFFERENCING

5.4.4 EXAMPLE — STOCK INDEXES

5.4.5 GENERALIZED LEAST SQUARES (GLS): THE COCHRANE‐ORCUTT PROCEDURE

5.4.6 EXAMPLE — TIME INTERVALS BETWEEN OLD FAITHFUL GEYSER ERUPTIONS

5.5 Summary

KEY TERMS

CHAPTER SIX Analysis of Variance

6.1 Introduction

6.2 Concepts and Background Material. 6.2.1 ONE‐WAY ANOVA

6.2.2 TWO‐WAY ANOVA

6.3 Methodology

6.3.1 CODINGS FOR CATEGORICAL PREDICTORS

6.3.2 MULTIPLE COMPARISONS

6.3.3 LEVENE'S TEST AND WEIGHTED LEAST SQUARES

6.3.4 MEMBERSHIP IN MULTIPLE GROUPS

6.4 Example — DVD Sales of Movies

6.5 Higher‐Way ANOVA

6.6 Summary

KEY TERMS

CHAPTER SEVEN Analysis of Covariance

7.1 Introduction

7.2 Methodology. 7.2.1 CONSTANT SHIFT MODELS

7.2.2 VARYING SLOPE MODELS

7.3 Example — International Grosses of Movies

7.4 Summary

KEY TERMS

CHAPTER EIGHT Logistic Regression

8.1 Introduction

8.2 Concepts and Background Material

8.2.1 THE LOGIT RESPONSE FUNCTION

8.2.2 BERNOULLI AND BINOMIAL RANDOM VARIABLES

8.2.3 PROSPECTIVE AND RETROSPECTIVE DESIGNS

8.3 Methodology

8.3.1 MAXIMUM LIKELIHOOD ESTIMATION

8.3.2 INFERENCE, MODEL COMPARISON, AND MODEL SELECTION

8.3.3 GOODNESS‐OF‐FIT

8.3.4 MEASURES OF ASSOCIATION AND CLASSIFICATION ACCURACY

8.3.5 DIAGNOSTICS

8.4 Example — Smoking and Mortality

8.5 Example — Modeling Bankruptcy

8.6 Summary

KEY TERMS

CHAPTER NINE Multinomial Regression

9.1 Introduction

9.2 Concepts and Background Material

9.2.1 NOMINAL RESPONSE VARIABLE

9.2.2 ORDINAL RESPONSE VARIABLE

9.3 Methodology. 9.3.1 ESTIMATION

9.3.2 INFERENCE, MODEL COMPARISONS, AND STRENGTH OF FIT

9.3.3 LACK OF FIT AND VIOLATIONS OF ASSUMPTIONS

9.4 Example — City Bond Ratings

9.5 Summary

KEY TERMS

CHAPTER TEN Count Regression

10.1 Introduction

10.2 Concepts and Background Material

10.2.1 THE POISSON RANDOM VARIABLE

10.2.2 GENERALIZED LINEAR MODELS

10.3 Methodology. 10.3.1 ESTIMATION AND INFERENCE

10.3.2 OFFSETS

10.4 Overdispersion and Negative Binomial Regression

10.4.1 QUASI‐LIKELIHOOD

10.4.2 NEGATIVE BINOMIAL REGRESSION

10.5 Example — Unprovoked Shark Attacks in Florida

10.6 Other Count Regression Models

10.7 Poisson Regression and Weighted Least Squares

10.7.1 EXAMPLE — INTERNATIONAL GROSSES OF MOVIES (CONTINUED)

10.8 Summary

KEY TERMS

CHAPTER ELEVEN Models for Time‐to‐Event (Survival) Data

11.1 Introduction

11.2 Concepts and Background Material. 11.2.1 THE NATURE OF SURVIVAL DATA

11.2.2 ACCELERATED FAILURE TIME MODELS

11.2.3 THE PROPORTIONAL HAZARDS MODEL

11.3 Methodology. 11.3.1 THE KAPLAN‐MEIER ESTIMATOR AND THE LOG‐RANK TEST. 11.3.1.1 The Kaplan‐Meier Estimator

11.3.1.2 The Log‐Rank Test

11.3.1.3 Example — The Survival of Broadway Shows

11.3.2 PARAMETRIC (LIKELIHOOD) ESTIMATION

11.3.3 SEMIPARAMETRIC (PARTIAL LIKELIHOOD) ESTIMATION

11.3.4 THE BUCKLEY‐JAMES ESTIMATOR

11.4 Example — The Survival of Broadway Shows (continued)

11.5 Left‐Truncated/Right‐Censored Data and Time‐Varying Covariates. 11.5.1 LEFT‐TRUNCATED/RIGHT‐CENSORED DATA

11.5.2 EXAMPLE — THE SURVIVAL OF BROADWAY SHOWS (CONTINUED)

11.5.3 TIME‐VARYING COVARIATES

11.5.4 EXAMPLE — FEMALE HEADS OF GOVERNMENT

11.6 Summary

KEY TERMS

CHAPTER TWELVE Nonlinear Regression

12.1 Introduction

12.2 Concepts and Background Material

12.3 Methodology

12.3.1 NONLINEAR LEAST SQUARES ESTIMATION

12.3.2 INFERENCE FOR NONLINEAR REGRESSION MODELS

12.4 Example — Michaelis‐Menten Enzyme Kinetics

12.5 Summary

KEY TERMS

CHAPTER THIRTEEN Models for Longitudinal and Nested Data

13.1 Introduction

13.2 Concepts and Background Material

13.2.1 NESTED DATA AND ANOVA

13.2.2 LONGITUDINAL DATA AND TIME SERIES

13.2.3 FIXED EFFECTS VERSUS RANDOM EFFECTS

13.3 Methodology. 13.3.1 THE LINEAR MIXED EFFECTS MODEL

13.3.2 THE GENERALIZED LINEAR MIXED EFFECTS MODEL

13.3.3 GENERALIZED ESTIMATING EQUATIONS

13.3.4 NONLINEAR MIXED EFFECTS MODELS

13.4 Example — Tumor Growth in a Cancer Study

13.5 Example — Unprovoked Shark Attacks in the United States

13.6 Summary

KEY TERMS

CHAPTER FOURTEEN Regularization Methods and Sparse Models

14.1 Introduction

14.2 Concepts and Background Material

14.2.1 THE BIAS–VARIANCE TRADEOFF

14.2.2 LARGE NUMBERS OF PREDICTORS AND SPARSITY

14.3 Methodology. 14.3.1 FORWARD STEPWISE REGRESSION

14.3.2 RIDGE REGRESSION

14.3.3 THE LASSO

14.3.4 OTHER REGULARIZATION METHODS

14.3.5 CHOOSING THE REGULARIZATION PARAMETER(S)

14.3.6 MORE STRUCTURED REGRESSION PROBLEMS

14.3.7 CAUTIONS ABOUT REGULARIZATION METHODS

14.4 Example — Human Development Index

14.5 Summary

KEY TERMS

CHAPTER FIFTEEN Smoothing and Additive Models

15.1 Introduction

15.2 Concepts and Background Material. 15.2.1 THE BIAS–VARIANCE TRADEOFF

15.2.2 SMOOTHING AND LOCAL REGRESSION

15.3 Methodology. 15.3.1 LOCAL POLYNOMIAL REGRESSION

15.3.2 CHOOSING THE BANDWIDTH

15.3.3 SMOOTHING SPLINES

15.3.4 MULTIPLE PREDICTORS, THE CURSE OF DIMENSIONALITY, AND ADDITIVE MODELS

15.4 Example — Prices of German Used Automobiles

15.5 Local and Penalized Likelihood Regression

15.5.1 EXAMPLE — THE BECHDEL RULE AND HOLLYWOOD MOVIES

15.6 Using Smoothing to Identify Interactions

15.6.1 EXAMPLE — ESTIMATING HOME PRICES (CONTINUED)

15.7 Summary

KEY TERMS

CHAPTER SIXTEEN Tree‐Based Models

16.1 Introduction

16.2 Concepts and Background Material. 16.2.1 RECURSIVE PARTITIONING

16.2.2 TYPES OF TREES

16.2.2.1 Regression Trees

16.2.2.2 Classification Trees

16.3 Methodology. 16.3.1 CART

16.3.2 CONDITIONAL INFERENCE TREES

16.3.3 ENSEMBLE METHODS

16.4 Examples. 16.4.1 ESTIMATING HOME PRICES (CONTINUED)

16.4.2 EXAMPLE — COURTESY IN AIRPLANE TRAVEL

16.5 Trees for Other Types of Data. 16.5.1 TREES FOR NESTED AND LONGITUDINAL DATA

16.5.1.1 Example — Wages of Young People

16.5.2 SURVIVAL TREES

16.5.2.1 Example — The Survival of Broadway Shows (continued)

16.5.2.2 Example — Female Heads of Government (continued)

16.6 Summary

KEY TERMS

Bibliography

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

David J. Balding, Noel A.C. Cressie, Garrett M. Fitzmaurice, Harvey Goldstein, Geert Molenberghs, David W. Scott, Adrian F.M. Smith, and Ruey S. Tsay

.....

(1.11)

with corresponding confidence interval

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Regression Analysis With Applications in R
Подняться наверх