Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор книги: id книги: 2352005     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13408,3 руб.     (130,72$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119790310 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Increasingly dense and flexible wireless networks require the use of artificial intelligence (AI) for planning network deployment, optimization, and dynamic control. Machine learning algorithms are now often used to predict traffic and network state in order to reserve resources for smooth communication with high reliability and low latency. In Artificial Intelligence and Quantum Computing for Advanced Wireless Networks , the authors deliver a practical and timely review of AI-based learning algorithms, with several case studies in both Python and R. The book discusses the game-theory-based learning algorithms used in decision making, along with various specific applications in wireless networks, like channel, network state, and traffic prediction. Additional chapters include Fundamentals of ML, Artificial Neural Networks (NN), Explainable and Graph NN, Learning Equilibria and Games, AI Algorithms in Networks, Fundamentals of Quantum Communications, Quantum Channel, Information Theory and Error Correction, Quantum Optimization Theory, and Quantum Internet, to name a few. The authors offer readers an intuitive and accessible path from basic topics on machine learning through advanced concepts and techniques in quantum networks. Readers will benefit from: A thorough introduction to the fundamentals of machine learning algorithms, including linear and logistic regression, decision trees, random forests, bagging, boosting, and support vector machines An exploration of artificial neural networks, including multilayer neural networks, training and backpropagation, FIR architecture spatial-temporal representations, quantum ML, quantum information theory, fundamentals of quantum internet, and more Discussions of explainable neural networks and XAI Examinations of graph neural networks, including learning algorithms and linear and nonlinear GNNs in both classical and quantum computing technology Perfect for network engineers, researchers, and graduate and masters students in computer science and electrical engineering, Artificial Intelligence and Quantum Computing for Advanced Wireless Networks is also an indispensable resource for IT support staff, along with policymakers and regulators who work in technology.

Оглавление

Savo G. Glisic. Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Preface

1 Introduction. 1.1 Motivation

1.2 Book Structure

References

2 Machine Learning Algorithms

2.1 Fundamentals. 2.1.1 Linear Regression

2.1.2 Logistic Regression

2.1.3 Decision Tree: Regression Trees Versus Classification Trees

2.1.4 Trees in R and Python

2.1.5 Bagging and Random Forest

2.1.6 Boosting GBM and XGBoost

2.1.7 Support Vector Machine

2.1.8 Naive Bayes, kNN, k‐Means

Example 2.1

Design Example 2.1

Example 2.2

Example 2.3

Example 2.4

2.1.9 Dimensionality Reduction

Design Example 2.2

2.2 ML Algorithm Analysis. 2.2.1 Logistic Regression

2.2.2 Decision Tree Classifiers

Design Example 2.3

Design Example 2.4

2.2.3 Dimensionality Reduction Techniques

Design Example 2.5

References

3 Artificial Neural Networks. 3.1 Multi‐layer Feedforward Neural Networks. 3.1.1 Single Neurons

3.1.2 Weights Optimization

3.2 FIR Architecture. 3.2.1 Spatial Temporal Representations

3.2.2 Neural Network Unfolding

Example

3.2.3 Adaptation

Design Example 3.1

3.3 Time Series Prediction

3.3.1 Adaptation and Iterated Predictions

3.4 Recurrent Neural Networks. 3.4.1 Filters as Predictors

3.4.2 Feedback Options in Recurrent Neural Networks

3.4.3 Advanced RNN Architectures

3.5 Cellular Neural Networks (CeNN)

3.6 Convolutional Neural Network (CoNN)

3.6.1 CoNN Architecture

3.6.2 Layers in CoNN

References

4 Explainable Neural Networks

4.1 Explainability Methods

4.1.1 The Complexity and Interoperability

4.1.2 Global Versus Local Interpretability

4.1.3 Model Extraction

4.2 Relevance Propagation in ANN

4.2.1 Pixel‐wise Decomposition

4.2.2 Pixel‐wise Decomposition for Multilayer NN

4.3 Rule Extraction from LSTM Networks

4.4 Accuracy and Interpretability

4.4.1 Fuzzy Models

Design Example 4.1

Design Example 4.2

Design Example 4.3

Algorithm 4.1 Mamdani (max‐min) inference

Design Example 4.4

Design Example 4.5

4.4.2 SVR

4.4.3 Combination of Fuzzy Models and SVR

References

5 Graph Neural Networks

5.1 Concept of Graph Neural Network (GNN)

5.1.1 Classification of Graphs

5.1.2 Propagation Types

5.1.3 Graph Networks

5.2 Categorization and Modeling of GNN

5.2.1 RecGNNs

5.2.2 ConvGNNs

5.2.3 Graph Autoencoders (GAEs)

5.2.4 STGNNs

5.3 Complexity of NN

5.3.1 Labeled Graph NN (LGNN)

Theorem 5.1

Theorem 5.2

5.3.2 Computational Complexity

Appendix 5.A Notes on Graph Laplacian

Proposition 5.1

Proposition 5.2

Appendix 5.B Graph Fourier Transform

References

6 Learning Equilibria and Games. 6.1 Learning in Games

Fictitious Play

Design Example 6.1

Definition 6.1

Definition 6.2

Proposition 6.1

6.1.1 Learning Equilibria of Games

Definition 6.3

Definition 6.4

Definition 6.5

Theorem 6.1

Theorem 6.2

Lemma 6.1

Theorem 6.3

Definition 6.6

Lemma 6.2

Corollary 6.1

Lemma 6.3

Lemma 6.4

Theorem 6.4

Corollary 6.2

Theorem 6.5

6.1.2 Congestion Games

Algorithm 1 GRAPHICALGAMES

Definition 6.7

Theorem 6.6:

Corollary 6.3

Definition 6.8

Algorithm 2 PARALLELLINKS

Lemma 6.5

Lemma 6.6

Lemma 6.7

Theorem 6.7:

Lemma 6.8

Lemma 6.9

Algorithm 3 PARALLELLINKS AVOIDING OVER‐QUERIES

Theorem 6.8

Lemma 6.10

Definition 6.9

Definition 6.10

Algorithm 4 ProcessK

Lemma 6.11

Lemma 6.12

Algorithm 5 ProcessD

Lemma 6.13

Lemma 6.14

Lemma 6.15

Algorithm 6 FINDKBRIDGES (k)

Lemma 6.16

Lemma 6.17

Algorithm 7 MULTIPROCESSK

Lemma 6.18

Theorem 6.9

6.2 Online Learning of Nash Equilibria in Congestion Games

Design Example 6.2

Algorithm 8 Online Learning Framework for the Congestion Game

6.3 Minority Games

6.4 Nash Q‐Learning

6.4.1 Multi‐agentQ‐Learning

6.4.2 Convergence

Lemma 6.19

Assumption*)

Lemma 6.20

6.5 Routing Games

6.5.1 Nonatomic Selfish Routing

Design Example 6.3

Design Example 6.4 Braess’s Paradox

6.5.2 Atomic Selfish Routing

Design Example 6.5

6.5.3 Existence of Equilibrium

Theorem 6.10

Theorem 6.11

6.5.4 Reducing the POA

Theorem 6.12

Design Example 6.6

Theorem 6.13

Corollary 6.4

6.6 Routing with Edge Priorities

Theorem 6.14

Proposition *)

Theorem 6.15

Theorem 6.16

6.6.1 Computing Equilibria

References

Notes

7 AI Algorithms in Networks. 7.1 Review of AI‐Based Algorithms in Networks

7.1.1 Traffic Prediction

7.1.2 Traffic Classification

7.1.3 Traffic Routing

7.1.4 Congestion Control

7.1.5 Resource Management

7.1.6 Fault Management

7.1.7 QoS and QoE Management

7.1.8 Network Security

7.2 ML for Caching in Small Cell Networks

7.2.1 System Model

7.3 Q‐Learning‐Based Joint Channel and Power Level Selection in Heterogeneous Cellular Networks

7.3.1 Stochastic Noncooperative Game

7.3.2 Multi‐Agent Q‐Learning

7.3.3 Q‐Learning for Channel and Power Level Selection

7.4 ML for Self‐Organizing Cellular Networks

7.4.1 Learning in Self‐Configuration

7.4.2 RL for SON Coordination

7.4.3 SON Function Model

7.4.4 Reinforcement Learning

Design Example 7.1

Design Example 7.2

7.5 RL‐Based Caching

7.5.1 System Model

7.5.2 Optimality Conditions

Design Example 7.3

7.6 Big Data Analytics in Wireless Networks

7.6.1 Evolution of Analytics

7.6.2 Data‐Driven Network Optimization

7.7 Graph Neural Networks. 7.7.1 Network Virtualization

7.7.2 GNN‐Based Dynamic Resource Management

7.7.3 Learning and Adaptation

Design Example 7.4

7.8 DRL for Multioperator Network Slicing

7.8.1 System Model

7.8.2 System Optimization

7.8.3 Game Equilibria by DRL

Lemma 7.1

Theorem 7.1

7.9 Deep Q‐Learning for Latency‐Limited Network Virtualization

7.9.1 System Model

7.9.2 Learning and Prediction

7.9.3 DRL for Dynamic VNF Migration

Design Example 7.5

7.10 Multi‐Armed Bandit Estimator (MBE)

7.10.1 System Model

Lemma 7.2

Lemma 7.3

Lemma 7.4

Theorem 7.2:

Corollary 7.1

7.10.2 System Performance

Definition2)

Lemma 7.5

Design Example 7.6

7.11 Network Representation Learning

7.11.1 Network Properties

7.11.2 Unsupervised NRL

7.11.2.1 Unsupervised Structure Preserving

7.11.2.1.1 Microscopic Structure Preserving NRL

7.11.2.1.2 Mesoscopic Structure

Structural Role Proximity Preserving NRL

Intra‐community Proximity Preserving NRL

7.11.2.1.3 Macroscopic Structure Preserving NRL

7.11.2.2 Unsupervised Content Augmented NRL

7.11.2.2.1 Text‐Associated DeepWalk (TADW)

7.11.2.2.2 Homophily, Structure, and Content Augmented Network Representation Learning (HSCA)

7.11.2.2.3 Paired Restricted Boltzmann Machine (pRBM)

7.11.2.2.4 User Profile Preserving Social Network Embedding (UPP‐SNE)

7.11.2.2.5 Property Preserving Network Embedding (PPNE)

7.11.3 Semi‐Supervised NRL

7.11.3.1 Semi‐Supervised Structure Preserving NRL

7.11.3.1.1 Discriminative Deep Random Walk (DDRW)

7.11.3.1.2 Max‐Margin DeepWalk (MMDW)

7.11.3.1.3 Transductive LINE (TLINE)

7.11.3.1.4 Group Enhanced Network Embedding (GENE)

7.11.3.1.5 Semi‐supervised Network Embedding (SemiNE)

7.11.3.2 Semi‐supervised Content Augmented NRL

7.11.3.2.1 Tri‐Party Deep Network Representation (TriDNR)

7.11.3.2.2 Linked Document Embedding (LDE)

7.11.3.2.3 Discriminative Matrix Factorization (DMF)

7.11.3.2.4 Predictive Labels and Neighbors with Embeddings Transductively or Inductively from Data (Planetoid)

7.11.3.2.5 Label informed Attribute Network Embedding (LANE)

References

8 Fundamentals of Quantum Communications. 8.1 Introduction

8.2 Quantum Gates and Quantum Computing

8.2.1 Quantum Circuits

8.2.2 Quantum Algorithms

8.3 Quantum Fourier Transform (QFT)

Design Example 8.1

Design Example 8.2

8.3.1 QFT Versus FFT Revisited

References

9 Quantum Channel Information Theory

9.1 Communication Over a Channel

9.2 Quantum Information Theory

9.2.1 Density Matrix and Trace Operator

9.2.2 Quantum Measurement

Design Example 9.1

9.3 Channel Description

Design Example 9.2 Partial Trace

9.3.1 Channel Entropy

9.3.2 Some History

9.4 Channel Classical Capacities

9.4.1 Capacity of Classical Channels

9.4.2 The Private Classical Capacity

9.4.3 The Entanglement‐Assisted Classical Capacity

9.4.4 The Classical Zero‐Error Capacity

9.4.5 Entanglement‐Assisted Classical Zero‐Error Capacity

Design Example 9.3

9.5 Channel Quantum Capacity

9.5.1 Preserving Quantum Information

9.5.2 Quantum Coherent Information

9.5.3 Connection Between Classical and Quantum Information

9.6 Quantum Channel Examples

9.6.1 Channel Maps

9.6.2 Capacities

9.6.3 Q Channel Parameters

Design Example 9.4

References

10 Quantum Error Correction

Design Example 10.1

Design Example 10.2

Design Example 10.3

Design Example 10.4

Design Example 10.5

10.1 Stabilizer Codes

Design Example 10.6 COMMUTATION PROPERTIES FOR PAULI OPERATORS

Design Example 10.7 THE [[4, 2, 2]] DETECTION CODE

Design Example 10.8 THE SHOR [[9, 1, 3]] CODE

10.2 Surface Code

Design Example 10.9 THE [[5,1,2]] SURFACE CODE

10.2.1 The Rotated Lattice

10.3 Fault‐Tolerant Gates

10.3.1 Fault Tolerance

10.4 Theoretical Framework

10.4.1 Classical EC

Design Example 10.10 ERROR CORRECTION

Design Example 10.11

10.4.2 Theory of QEC. 10.4.2.1 Preliminaries

10.4.2.2 Basics of QEC Theory

10.4.2.3 Code Construction

Design Example 10.12 CODES

10.4.2.4 More on Coding and Syndrome Extractions

10.A Binary Fields and Discrete Vector Spaces

10.B Some Noise Physics

References

11 Quantum Search Algorithms

11.1 Quantum Search Algorithms. 11.1.1 The Deutsch Algorithm [2]

11.1.2 The Deutsch–Jozsa Algorithm

11.1.3 Simon’s Algorithm

11.1.4 Shor’s Algorithm

11.1.5 Quantum Phase Estimation Algorithm

11.1.6 Grover’s Quantum Search Algorithm

Design Example 11.1

11.1.7 Boyer–Brassard–Høyer–Tapp QSA

11.1.8 Dürr–Høyer QSA

11.1.9 Quantum Counting Algorithm

11.1.10 Quantum Heuristic Algorithm

11.1.11 Quantum GA

11.1.12 Harrow–Hassidim–Lloyd Algorithm

11.1.13 Quantum Mean Algorithm

11.1.14 Quantum Weighted Sum Algorithm

11.2 Physics of Quantum Algorithms

11.2.1 Implementation of Deutsch’s Algorithm

11.2.2 Implementation of Deutsch–Jozsa Algorithm

11.2.3 Bernstein and Vazirani’s Implementation

11.2.4 Implementation of QFT

11.2.5 Estimating Arbitrary Phases

11.2.6 Improving Success Probability When Estimating Phases

11.2.7 The Order‐Finding Problem

Design Example 11.2

11.2.8 Concatenated Interference

Design Example 11.3

Design Example 11.4 Grover’s Algorithm

Design Example 11.5 Simon’s Algorithm

Design Example 11.6 Shor’s Algorithm

Definition 1

Theorem 1

Theorem 2

Design Example 11.7 QC Implementation of Shor’s Algorithm

References

12 Quantum Machine Learning

12.1 QML Algorithms

12.2 QNN Preliminaries

12.3 Quantum Classifiers with ML: Near‐Term Solutions

12.3.1 The Circuit‐Centric Quantum Classifier

Design Example 12.1

12.3.2 Training

12.4 Gradients of Parameterized Quantum Gates

12.5 Classification with QNNs

12.5.1 Representation

12.5.2 Learning

12.6 Quantum Decision Tree Classifier

12.6.1 Model of the Classifier

Appendix 12.7 Matrix Exponential

Design Example 12.2

Solution

Remark 1:

Remark 2:

Design Example 12.3

Solution

Design Example 12.4

Design Example 12.5

Solution 1: (Use Diagonalization)

Solution 3: (Use Fundamental Solutions and Avoid Complex Exponential Functions)

References

13 QC Optimization. 13.1 Hybrid Quantum‐Classical Optimization Algorithms

13.1.1 QAOA

Design Example 13.1

13.2 Convex Optimization in Quantum Information Theory

Theorem 13.1

Theorem 13.2

Corollary 13.3

Corollary

13.2.1 Relative Entropy of Entanglement

Theorem 13.5

Theorem 13.6

13.3 Quantum Algorithms for Combinatorial Optimization Problems

Design Example 13.2

Design Example 13.2

13.4 QC for Linear Systems of Equations

Problem Statement

13.4.1 Algorithm in Brief

13.4.2 Detailed Description of the Algorithm

13.4.3 Error Analysis

Design Example 13.4 QC FOR MULTIPLE REGRESSION

13.5 Quantum Circuit

13.6 Quantum Algorithm for Systems of Nonlinear Differential Equations

References

14 Quantum Decision Theory

14.1 Potential Enablers for Qc

14.2 Quantum Game Theory (QGT)

14.2.1 Definitions

Design Example 14.1

14.2.2 Quantum Games

Definition 14.1

Design Example 14.2

14.2.3 Quantum Game for Spectrum Sharing

14.3 Quantum Decision Theory (QDT)

14.3.1 Model: QDT

Design Example 14.3

14.3.1.1 Decision Tasks and Participants

14.4 Predictions in QDT

14.4.1 Utility Factors

14.4.2 Classification of Lotteries by Attraction Indices

Design Example 14.4

14.4.2.1 Lotteries with Gains [77]

14.4.2.2 Lotteries with Losses

References

15 Quantum Computing in Wireless Networks

15.1 Quantum Satellite Networks

15.1.1 Satellite‐Based QKD System

15.1.2 QSN Architecture

15.1.3 Routing and Resource Allocation Algorithm

Algorithm 1 Joint GEO‐LEO Routing and Key Allocation Algorithm

Algorithm 2 Joint GEO‐LEO Access Algorithm

Algorithm 3 Separated GEO and LEO Access Algorithm

Design Example 15.111

15.2 QC Routing for Social Overlay Networks

15.2.1 Social Overlay Network

15.2.2 Multiple‐Objective Optimization Model

Definition 1

Definition 2

15.3 QKD Networks

15.3.1 QoS in QKD Overlay Networks

15.3.2 Adaptive QoS‐QKD Networks

15.3.3 Routing Protocol for QKD Network

Design Example 15.222

References

Notes

16 Quantum Network on Graph

16.1 Optimal Routing in Quantum Networks

16.1.1 Network Model

16.1.2 Entanglement

16.1.3 Optimal Quantum Routing

Algorithm 1 Expected Entanglement Rate

Algorithm 2 Auxiliary Functions

Algorithm 3 Optimal Path Selection

Design Example 16.1 [17]

16.2 Quantum Network on Symmetric Graph

Design Example 16.2

16.3 QWs

16.3.1 DQWL

16.3.2 Performance Study of DQWL

16.4 Multidimensional QWs

16.4.1 The Quantum Random Walk

16.4.2 Quantum Random Walks on General Graphs

16.4.3 Continuous‐Time Quantum Random Walk

16.4.4 Searching Large‐Scale Graphs

References

17 Quantum Internet

17.1 System Model

17.1.1 Routing Algorithms

Algorithm 1 Distributed Routing Algorithms (s, e, , D, cap)

Algorithm 2 Modified Greedy: PathDisc(s, e, , Ds,e)

Algorithm 3 Local Best Effort: PathDisc(s, e, , Ds,e)

Algorithm 4 NoN Local Best Effort: PathDisc(s, e, , Ds,e)

17.1.2 Quantum Network on General Virtual Graph

17.1.3 Quantum Network on Ring and Grid Graph

Design Example 17.1

17.1.4 Quantum Network on Recursively Generated Graphs (RGGs)

17.1.5 Recursively Generated Virtual Graph

17.2 Quantum Network Protocol Stack

17.2.1 Preliminaries

Protocol 1 Steiner (S, x)

Assumptions

17.2.2 Quantum Network Protocol Stack

17.2.3 Layer 3 – Reliable State Linking

17.2.4 Layer 4 – Region Routing

Protocol 2 Region Routing(S)

Design Example 17.2 Region Routing [44]

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Savo G. Glisic

Worcester Polytechnic Institute, Massachusetts, USA

.....

Distance measure: Similar to the gain ratio, this measure also normalizes the impurity measure. However, the method used is different:

(2.18)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Подняться наверх