Описание книги
Машинное обучение - один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами.
Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия.
Книга задумывалась как повышенный курс для студентов средних и старших курсов, фундаментальные основы и алгоритмы машинного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин.
Важнейшие алгоритмы машинного обучения
Когда необходимо машинное обучение
Вычислительная сложность обучения
Обучение нейронных сетей
Оценка максимального правдоподобия
Инструмент для извлечения информации из больших на-боров данных