Non-equilibrium Thermodynamics of Heterogeneous Systems
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Signe Kjelstrup. Non-equilibrium Thermodynamics of Heterogeneous Systems
SERIES ON ADVANCES IN STATISTICAL MECHANICS*
Preface of the second edition. Aim of the book
Teaching non-equilibrium thermodynamics
Acknowledgments for the second edition
Preface of the first edition. About the book
Our inspiration
Readership
Acknowledgments for the first edition
Contents
Chapter 1. Scope
1.1What is non-equilibrium thermodynamics?
1.2Non-equilibrium thermodynamics in the context of other theories
1.3Purpose of this book
Chapter 2. Why non-equilibrium thermodynamics?
2.1Simple flux equations
2.2Flux equations with coupling terms
2.3Experimental designs and controls
2.4Entropy production, work and lost work
2.5Consistent thermodynamic models
Chapter 3. Thermodynamic relations for heterogeneous systems
3.1Two homogeneous phases separated by a surface in global equilibrium
3.2The contact line in global equilibrium
3.3Defining thermodynamic variables for the surface
3.4Local thermodynamic identities
3.5Defining local equilibrium
3.AAppendix: Partial molar properties
3.A.1Homogeneous phases
3.A.2The surface
3.A.3Standard states
Chapter 4. The entropy production for a homogeneous phase
4.1Balance equations
4.2The entropy production
4.2.1Why one should not use the dissipation function
4.2.2States with minimum entropy production
4.3Examples
4.4Frames of reference for fluxes in homogeneous systems
4.4.1Definitions of frames of reference
4.4.2Transformations between the frames of reference
4.AAppendix: The first law and the heat flux
Chapter 5. The excess entropy production for the surface
5.1The discrete nature of the surface
5.2The behavior of the electric fields and the potential through the surface
5.3Balance equations
5.4The excess entropy production
5.4.1Reversible processes at the interface and the Nernst equation
5.4.2The surface potential jump at the hydrogen electrode
5.5Examples
Chapter 6. The excess entropy production for a three-phase contact line
6.1The discrete nature of the contact line
6.2Balance equations
6.3The excess entropy production
6.4Stationary states
6.5Concluding comment
Chapter 7. Flux equations and Onsager relations
7.1Flux–force relations
7.2Onsager’s reciprocal relations
7.3Relaxation to equilibrium: Consequences of violating Onsager relations
7.4Force–flux relations
7.5Coefficient bounds
7.6The Curie principle applied to surfaces and contact lines
Chapter 8. Transport of heat and mass
8.1The homogeneous phases
8.2Coefficient values for homogeneous phases
8.3The surface
8.3.1Heats of transfer for the surface
8.4Solution for the heterogeneous system
8.5Scaling relations between surface and bulk resistivities
Chapter 9. Transport of heat and charge
9.1The homogeneous phases
9.2The surface
9.3Thermoelectric coolers
9.4Thermoelectric generators
9.5Solution for the heterogeneous system
Chapter 10. Transport of mass and charge
10.1The electrolyte
10.2The electrode surfaces
10.3Solution for the heterogeneous system
10.4A salt power plant
10.5Electric power from volume flow
10.6Ionic mobility model for the electrolyte
10.7Ionic and electronic model for the surface
Chapter 11. Evaporation and condensation
11.1Evaporation and condensation in a pure fluid. 11.1.1The entropy production and the flux equations
11.1.2Interface resistivities from kinetic theory
11.2The sign of the heats of transfer of the surface
11.3Coefficients from molecular dynamics simulations
11.4Evaporation and condensation in a two-component fluid. 11.4.1The entropy production and the flux equations
11.4.2Interface resistivities from kinetic theory
Chapter 12. Multi-component diffusion, heat conduction and cross effects
12.1The homogeneous phases
12.2The Maxwell–Stefan equations for multi-component diffusion
12.3The Maxwell–Stefan equations for the surface
12.4Multi-component diffusion
12.4.1Prigogine’s theorem
12.4.2Diffusion in the solvent frame of reference
12.4.3Other frames of reference
12.4.4An example: Kinetic demixing of oxides
12.5A relation between the heats of transfer and the enthalpy
Chapter 13. A non-isothermal concentration cell
13.1The homogeneous phases
13.1.1Entropy production and flux equations for the anode
13.1.2Position-dependent transport coefficients
13.1.3The profiles of the homogeneous anode
13.1.4Contributions from the cathode
13.1.5The electrolyte contribution
13.2Surface contributions. 13.2.1The anode surface
13.2.2The cathode surface
13.3The thermoelectric potential
Chapter 14. The transported entropy
14.1The Seebeck coefficient of cell a
14.2The transported entropy of Pb2+ in cell a
14.3The transported entropy of the cation in cell b
14.4The transported entropy of the ions cell c
14.5Transformation properties
14.6Concluding comments
Chapter 15. Adiabatic electrode reactions
15.1The homogeneous phases. 15.1.1The silver phases
15.1.2The silver chloride phases
15.1.3The electrolyte
15.2The interfaces. 15.2.1The silver–silver chloride interfaces
15.2.2The silver chloride–electrolyte interfaces
15.3Temperature and electric potential profiles
Chapter 16. The liquid junction potential
16.1The flux equations for the electrolyte
16.2The liquid junction potential
16.3Liquid junction potential calculations compared
16.4Concluding comments
Chapter 17. The formation cell
17.1The isothermal cell. 17.1.1The electromotive force
17.1.2The transference coefficient of the salt in the electrolyte
17.1.3An electrolyte with a salt concentration gradient
17.1.4The Planck potential derived from ionic fluxes and forces
17.2A non-isothermal cell with a non-uniform electrolyte
17.2.1The homogeneous anode phase
17.2.2The electrolyte
17.2.3The surface of the anode
17.2.4The homogeneous phases and the surface of the cathode
17.2.5The cell potential
17.3Concluding comments
Chapter 18. Power from regular and thermal osmosis
18.1The potential work of a salt power plant
18.2The membrane as a barrier to transport of heat and mass
18.3Membrane transport of heat and mass
18.4Osmosis
18.5Thermal osmosis
Chapter 19. Modeling the polymer electrolyte fuel cell
19.1The potential work of a fuel cell
19.2The cell and its five subsystems
19.3The electrode backing and the membrane. 19.3.1The entropy production in the homogeneous phases
19.3.2The anode backing
19.3.3The membrane
19.3.4The cathode backing
19.4The electrode surfaces
19.4.1The anode catalyst surface
19.4.2The cathode catalyst surface
19.5A model in agreement with the second law
19.6Concluding comments
Chapter 20. Measuring membrane transport properties
20.1The membrane in equilibrium with electrolyte solutions
20.2The membrane resistivity
20.3Ionic transport numbers
20.4The transference number of water and the water permeability
20.5The Seebeck coefficient
20.6Interdiffusion coefficients
Chapter 21. The impedance of an electrode surface
21.1The hydrogen electrode: Mass balances
21.2The oscillating field
21.3Reaction Gibbs energies
21.4The electrode surface impedance
21.4.1The adsorption–diffusion layer in front of the catalyst
21.4.2The charge transfer reaction
21.4.3The impedance spectrum
21.5A test of the model
21.6The reaction overpotential
Chapter 22. Non-equilibrium molecular dynamics simulations
22.1The system
22.1.1The interaction potential
22.2Calculation techniques
22.3Verifying the assumption of local equilibrium
22.3.1Local equilibrium in a homogeneous binary mixture
22.3.2Local equilibrium in a gas–liquid interface
22.4Verifications of the Onsager relations
22.4.1A homogeneous binary mixture
22.4.2A gas–liquid interface
22.5Linearity of the flux–force relations
22.6Molecular mechanisms
Chapter 23. The non-equilibrium two-phase van der Waals model
23.1Van der Waals equation of states
23.2Van der Waals square gradient model for the interfacial region
23.3Balance equations
23.4The entropy production
23.5Flux equations
23.6A numerical solution method
23.7Procedure for extrapolation of bulk densities and fluxes
23.8Defining excess densities
23.9Thermodynamic properties of Gibbs’ surface
23.10An autonomous surface
23.11Excess densities depend on the choice of dividing surface
23.11.1Properties of dividing surfaces
23.11.2Surface excess densities for two dividing surfaces
23.11.3The surface temperature from excess density differences
23.12The entropy balance and the excess entropy production
23.13Resistivities to heat and mass transfer
23.14Concluding comments
Chapter 24. Curved surfaces
24.1Density profiles and the parameter m
24.2Balance equations
24.3The entropy production
24.4The surface resistivity to heat
24.5The curvature dependence of the resistivities
24.6Concluding remarks
Chapter 25. The catalyst surface temperature
25.1Heterogeneous catalysis
25.2The effect of coupling
25.3Surface temperature and Arrhenius plot
25.4Concluding remarks
Bibliography
Symbol lists
Index
Отрывок из книги
ISSN: 2010-1996
Series Editor: Davide Cassi (University of Parma, Italy)
.....
14.5Transformation properties
14.6Concluding comments
.....