Nonlinear Filters

Nonlinear Filters
Автор книги: id книги: 2281983     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (130,07$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119078159 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learningbased filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed expectation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.

Оглавление

Simon Haykin. Nonlinear Filters

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Nonlinear Filters. Theory and Applications

List of Figures

List of Table

Preface

Acknowledgments

Acronyms

1 Introduction. 1.1 State of a Dynamic System

1.2 State Estimation

1.3 Construals of Computing

1.4 Statistical Modeling

1.5 Vision for the Book

2 Observability. 2.1 Introduction

2.2 State‐Space Model

2.3 The Concept of Observability

2.4 Observability of Linear Time‐Invariant Systems

2.4.1 Continuous‐Time LTI Systems

2.4.2 Discrete‐Time LTI Systems

2.4.3 Discretization of LTI Systems

2.5 Observability of Linear Time‐Varying Systems

2.5.1 Continuous‐Time LTV Systems

2.5.2 Discrete‐Time LTV Systems

2.5.3 Discretization of LTV Systems

2.6 Observability of Nonlinear Systems

2.6.1 Continuous‐Time Nonlinear Systems

2.6.2 Discrete‐Time Nonlinear Systems

2.6.3 Discretization of Nonlinear Systems

2.7 Observability of Stochastic Systems

2.8 Degree of Observability

2.9 Invertibility

2.10 Concluding Remarks

3 Observers. 3.1 Introduction

3.2 Luenberger Observer

3.3 Extended Luenberger‐Type Observer

3.4 Sliding‐Mode Observer

3.5 Unknown‐Input Observer

3.6 Concluding Remarks

4 Bayesian Paradigm and Optimal Nonlinear Filtering. 4.1 Introduction

4.2 Bayes' Rule

4.3 Optimal Nonlinear Filtering

4.4 Fisher Information

4.5 Posterior Cramér–Rao Lower Bound

4.6 Concluding Remarks

5 Kalman Filter. 5.1 Introduction

5.2 Kalman Filter

5.3 Kalman Smoother

5.4 Information Filter

5.5 Extended Kalman Filter

5.6 Extended Information Filter

5.7 Divided‐Difference Filter

5.8 Unscented Kalman Filter

5.9 Cubature Kalman Filter

5.10 Generalized PID Filter

5.11 Gaussian‐Sum Filter

5.12 Applications

5.12.1 Information Fusion

5.12.2 Augmented Reality

5.12.3 Urban Traffic Network

5.12.4 Cybersecurity of Power Systems

5.12.5 Incidence of Influenza

5.12.6 COVID‐19 Pandemic

5.13 Concluding Remarks

6 Particle Filter. 6.1 Introduction

6.2 Monte Carlo Method

6.3 Importance Sampling

6.4 Sequential Importance Sampling

6.5 Resampling

6.6 Sample Impoverishment

6.7 Choosing the Proposal Distribution

6.8 Generic Particle Filter

6.9 Applications

6.9.1 Simultaneous Localization and Mapping

6.10 Concluding Remarks

7 Smooth Variable‐Structure Filter. 7.1 Introduction

7.2 The Switching Gain

7.3 Stability Analysis

7.4 Smoothing Subspace

7.5 Filter Corrective Term for Linear Systems

7.6 Filter Corrective Term for Nonlinear Systems

7.7 Bias Compensation

7.8 The Secondary Performance Indicator

7.9 Second‐Order Smooth Variable Structure Filter

7.10 Optimal Smoothing Boundary Design

7.11 Combination of SVSF with Other Filters

7.12 Applications

7.12.1 Multiple Target Tracking

7.12.2 Battery State‐of‐Charge Estimation

7.12.3 Robotics

7.13 Concluding Remarks

8 Deep Learning. 8.1 Introduction

8.2 Gradient Descent

8.3 Stochastic Gradient Descent

8.4 Natural Gradient Descent

8.5 Neural Networks

8.6 Backpropagation

8.7 Backpropagation Through Time

8.8 Regularization

8.9 Initialization

8.10 Convolutional Neural Network

8.11 Long Short‐Term Memory

8.12 Hebbian Learning

8.13 Gibbs Sampling

8.14 Boltzmann Machine

8.15 Autoencoder

8.16 Generative Adversarial Network

8.17 Transformer

8.18 Concluding Remarks

9 Deep Learning‐Based Filters. 9.1 Introduction

9.2 Variational Inference

9.3 Amortized Variational Inference

9.4 Deep Kalman Filter

9.5 Backpropagation Kalman Filter

9.6 Differentiable Particle Filter

9.7 Deep Rao–Blackwellized Particle Filter

9.8 Deep Variational Bayes Filter

9.9 Kalman Variational Autoencoder

9.10 Deep Variational Information Bottleneck

9.11 Wasserstein Distributionally Robust Kalman Filter

9.12 Hierarchical Invertible Neural Transport

9.13 Applications

9.13.1 Prediction of Drug Effect

9.13.2 Autonomous Driving

9.14 Concluding Remarks

10 Expectation Maximization. 10.1 Introduction

10.2 Expectation Maximization Algorithm

10.3 Particle Expectation Maximization

10.4 Expectation Maximization for Gaussian Mixture Models

10.5 Neural Expectation Maximization

10.6 Relational Neural Expectation Maximization

10.7 Variational Filtering Expectation Maximization

10.8 Amortized Variational Filtering Expectation Maximization

10.9 Applications

10.9.1 Stochastic Volatility

10.9.2 Physical Reasoning

10.9.3 Speech, Music, and Video Modeling

10.10 Concluding Remarks

11 Reinforcement Learning‐Based Filter. 11.1 Introduction

11.2 Reinforcement Learning

11.3 Variational Inference as Reinforcement Learning

11.4 Application

11.4.1 Battery State‐of‐Charge Estimation

11.5 Concluding Remarks

12 Nonparametric Bayesian Models. 12.1 Introduction

12.2 Parametric vs Nonparametric Models

12.3 Measure‐Theoretic Probability

12.4 Exchangeability

12.5 Kolmogorov Extension Theorem

12.6 Extension of Bayesian Models

12.7 Conjugacy

12.8 Construction of Nonparametric Bayesian Models

12.9 Posterior Computability

12.10 Algorithmic Sufficiency

12.11 Applications

12.11.1 Multiple Object Tracking

12.11.2 Data‐Driven Probabilistic Optimal Power Flow

12.11.3 Analyzing Single‐Molecule Tracks

12.12 Concluding Remarks

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Peyman Setoodeh

McMaster University

.....

with being obtained from

(2.54)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Nonlinear Filters
Подняться наверх