Sharing Economy and Big Data Analytics

Sharing Economy and Big Data Analytics
Автор книги: id книги: 1887500     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (151,71$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119694991 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The different facets of the sharing economy offer numerous opportunities for businesses ? particularly those that can be distinguished by their creative ideas and their ability to easily connect buyers and senders of goods and services via digital platforms. At the beginning of the growth of this economy, the advanced digital technologies generated billions of bytes of data that constitute what we call Big Data. This book underlines the facilitating role of Big Data analytics, explaining why and how data analysis algorithms can be integrated operationally, in order to extract value and to improve the practices of the sharing economy. It examines the reasons why these new techniques are necessary for businesses of this economy and proposes a series of useful applications that illustrate the use of data in the sharing ecosystem.

Оглавление

Soraya Sedkaoui. Sharing Economy and Big Data Analytics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Sharing Economy and Big Data Analytics

Preface

Introduction

I.1. Why this book?

I.2. The scope of this book

I.3. The challenge of this book

I.4. How to read this book

Part 1: The shared economy or the emergence of a new business model

Part 2: Big Data analytics at the service of the sharing economy

Part 3: The sharing economy? Not without the Big Data algorithms

1. The Sharing Economy: A Concept Under Construction

1.1. Introduction

1.2. From simple sharing to the sharing economy

1.2.1. The genesis of the sharing economy and the break with “consumer” society

1.2.2. The sharing economy: which economy?

1.3. The foundations of the sharing economy

1.3.1. Peer-to-peer (P2P): a revolution in computer networks

Box 1.1.The social web

Box 1.2.IP4 address

1.3.2. The gift: the abstract aspect of the sharing economy

Box 1.3.The gift according to Mauss

1.3.3. The service economy and the offer of use

Box 1.4.The service economy (ADEME 2017)

Box 1.5.Xerox and Michelin’s service economy

1.4. Conclusion

2. An Opportunity for the Business World

2.1. Introduction

2.2. Prosumption: a new sharing economy trend for the consumer

Box 2.1.“McDonalization” phenomenon of society

2.3. Poverty: a target in the spotlight of the shared economy

Box 2.2.Poverty’s two perspectives

2.4. Controversies on economic opportunities of the sharing economy

Box 2.3.Strong points of Internet use

Box 2.4.Meaning of the different transaction methods

Box 2.5.Lean start-up

2.5. Conclusion

3. Risks and Issues of the Sharing Economy

3.1. Introduction

3.2. Uberization: a white grain or just a summer breeze?

Box 3.1.Creative destruction (Raies 2012)

Box 3.2.A brief history of Uber (Lechien and Tinel 2016; O’toole and Matherne 2017)

3.3. The sharing economy: a disruptive model

Box 3.3.Examples of companies swept away by the wave of disruptive technologies (Joseph and Christensen 1995)

Box 3.4.The main definitions of the “uberization” concept (Lechien and Tinel 2016)

3.4. Major issues of the sharing economy

Box 3.5.The 19 proposals on the development of the sharing economy

3.5. Conclusion

4. Digital Platforms and the Sharing Mechanism

4.1. Introduction

4.2. Digital platforms: “What growth!”

Box 4.1.Bitcoin2

4.3. Digital platforms or technology at the service of the economy

Box 4.2.Coase’s transaction cost theory (2005)

4.4. From the sharing economy to the sharing platform economy

Box 4.3.Evolution of the turnover of collaborative platforms (PwC 2016)

4.5. Conclusion

5. Beyond the Word “Big”: The Changes

5.1. Introduction

5.2. The 3 Vs and much more: volume, variety, velocity

5.2.1. Volume

5.2.2. The variety

5.2.3. Velocity

5.2.4. What else?

5.3. The growth of computing and storage capacities

5.3.1. Big Data versus Big Computing

Box 5.1.Examples of Big Data technologies used

5.3.2. Big Data storage

5.3.3. Updating Moore’s Law

5.4. Business context change in the era of Big Data

5.4.1. The decision-making process and the dynamics of value creation

Box 5.2.Data in Porter’s value chain

5.4.2. The emergence of new data-driven business models

5.5. Conclusion

6. The Art of Analytics

6.1. Introduction

6.2. From simple analysis to Big Data analytics

Box 6.1.Analytics: from version 1.0 to version 3.0

6.2.1. Descriptive analysis: learning from past behavior to influence future outcomes

6.2.2. Predictive analysis: analyzing data to predict future outcomes

Box 6.2.Sentiment analysis: a common type of predictive analysis

6.2.3. Prescriptive analysis: recommending one or more action plan(s)

6.2.4. From descriptive analysis to prescriptive analysis: an example

Box 6.3.A solution for optimization problems

6.3. The process of Big Data analytics: from the data source to its analysis

Box 6.4.Knowledge discovery in databases (KDD)

6.3.1. Definition of objectives and requirements

6.3.2. Data collection

6.3.3. Data preparation

6.3.3.1. Missing values

6.3.3.2. Outliers

6.3.3.3. Errors

6.3.4. Exploration and interpretation

6.3.5. Modeling

6.3.5.1. Testing the model’s performance

6.3.5.2. Model optimization

6.3.6. Deployment

6.4. Conclusion

7. Data and Platforms in the Sharing Context

7.1. Introduction

7.2. Pioneers in Big Data

Box 7.1.Datacenter1

7.2.1. Big Data on Walmart’s shelves

7.2.2. The Big Data behind Netflix’s success story

7.2.3. The Amazon version of Big Data

7.2.4. Big data and social networks: the case of Facebook

Box 7.2.Cookies

7.2.5. IBM and data analysis in the health sector

7.3. Data, essential for sharing

7.3.1. Data and platforms at the heart of the sharing economy

7.3.2. The data of sharing economy companies

Box 7.3.Blockchain technology (Zahadat and Partridge 2018)

7.3.3. Privacy and data security in a sharing economy

7.3.4. Open Data and platform data sharing

7.4. Conclusion

8. Big Data Analytics Applied to the Sharing Economy

8.1. Introduction

8.2. Big Data and Machine Learning algorithms serving the sharing economy

8.2.1. Machine Learning algorithms

8.2.2. Algorithmic applications in the sharing economy context

8.3. Big Data technologies: the sharing economy companies’ toolbox

8.3.1. The appearance of a new concept and the creation of new technologies

8.3.1.1. The Hadoop ecosystem

8.3.1.2. Apache Spark

8.3.1.3. NoSQL databases

8.3.1.4. In-memory databases

8.3.1.5. Keep in mind

8.4. Big Data on the agenda of sharing economy companies

8.4.1. Uber

8.4.2. Airbnb

8.4.3. BlaBlaCar

8.4.4. Lyft

8.4.5. Yelp

8.4.6. Other cases

8.4.6.1. TaskRabbit

8.4.6.2. LaZooz

8.4.6.3. Mobike and Ofo

8.4.6.4. Other models based on data analysis

8.5. Conclusion

9. Linear Regression

9.1. Introduction

9.2. Linear regression: an advanced analysis algorithm

9.2.1. How are regression problems identified?

9.2.2. The linear regression model

Box 9.1.Gradient Descent

9.2.3. Minimizing modeling error

9.3. Other regression methods

9.3.1. Logistic regression

9.3.2. Additional regression models: regularized regression

9.3.2.1. Ridge regression

9.3.2.2. Lasso regression

9.4. Building your first predictive model: a use case

9.4.1. What variables help set a rental price on Airbnb?

9.4.1.1. Data preparation

9.4.1.2. Exploratory analysis

Box 9.2.The Pearson correlation coefficient

9.4.1.3. Modeling

Box 9.3.RMSE (Root Mean Squared Error)

9.5. Conclusion

10. Classification Algorithms

10.1. Introduction

10.2. A tour of classification algorithms

10.2.1. Decision trees

10.2.1.1. The structure of the decision tree

10.2.1.2. How the algorithm works

10.2.2. Naïve Bayes

10.2.2.1. The applications of the algorithm

10.2.2.2. Operation of the Naïve Bayes algorithm

Box 10.1.Bayes’ theorem

10.2.3. Support Vector Machine (SVM)

10.2.3.1. Definition of SVM

10.2.3.2. SVM: how it works

10.2.4. Other classification algorithms

10.2.4.1. The k-nearest neighbors (kNN)

10.2.4.2. Random Forest

Box 10.2.Bagging or bootstrap aggregation

10.2.4.3. Neural networks

Box 10.3.Deep Learning

10.3. Modeling Airbnb prices with classification algorithms

10.3.1. The work that’s already been done: overview

10.3.2. Models based on trees: decision tree versus Random Forest

10.3.2.1. Decision trees

10.3.2.2. Modeling using Random Forest

10.3.3. Price prediction with kNN

10.4. Conclusion

11. Cluster Analysis

11.1. Introduction

11.2. Cluster analysis: general framework

11.2.1. Cluster analysis applications

11.2.2. The clustering algorithm and the similarity measure

11.3. Grouping similar objects using k-means

11.3.1. The k-means algorithm

Box 11.1.Cluster analysis based on a prototype

11.3.1.1. Choosing the value of k

11.3.1.2. Assign each data group to a centroid

11.3.1.3. Assign each point to a class

11.3.1.4. Update the representatives for each class

11.3.2. Determine the number of clusters

11.3.2.1. Categorical data

11.3.2.2. The definition of the number of clusters

11.4. Hierarchical classification

11.4.1. The hierarchical model approach

11.4.2. Dendrograms

Box 11.2.Ward criterion

11.5. Discovering hidden structures with clustering algorithms

11.5.1. Illustration of the classification of prices based on different characteristics using the k-means algorithm

11.5.2. Identify the number of clusters k

Box 11.3.The elbow criterion

11.6. Conclusion

Conclusion

References

Index. A

B

C

D

E

F

G

H, I

J, K

L

M, N

O

Q, R

S

T

U, V

W

X, Y, Z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editor

Jean-Charles Pomerol

.....

Most of the time, gifting is not approached from an economic perspective, but rather from a socio-philosophical point of view. Thus, “a gift is a privileged object of anthropology and economic sociology since the essay on gifting by M. Mauss”5 (Athané 2008).

“[…] You will then have a fairly good idea of the kind of economy that is at present laboriously in gestation. We see it already functioning in certain economic groupings, and in the hearts of the masses, who possess very often better than their leaders, a sense of their own interests, and of the common interest. Perhaps by studying these obscure aspects of social life, we shall succeed in throwing a little light upon the path that our nations must follow, both in their morality and in their economy.”

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Sharing Economy and Big Data Analytics
Подняться наверх