Organic Electronics 1
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Thien-Phap Nguyen. Organic Electronics 1
Table of Contents
List of Illustrations
List of Tables
Guide
Pages
Organic Electronics 1. Materials and Physical Processes
Introduction
1. Semiconductor Theory
1.1. Introduction
1.2. Review of the basic concepts of crystalline semiconductors
1.2.1. Intrinsic semiconductors
1.2.2. Extrinsic semiconductors
1.2.3. Fermi level
1.2.4. Charge transport in semiconductors
1.2.4.1. Drift or electric current
1.2.4.2. Diffusion current
1.3. P–N junction
1.3.1. Space charge region
1.3.2. Junction capacitance
1.4. Impurities and defects
1.4.1. Traps and recombination centers
1.4.1.1. Traps
1.4.1.2. Recombination centers
1.4.1.3. Energy level of the trap center ET
1.4.1.4. Capture rates cn and cp
1.4.1.5. Emission rates en and ep
1.4.1.6. Principle of electrical defect measurements
1.4.1.6.1. Deep-level transient spectroscopy method
1.4.1.6.2. Determination of the defect parameters
1.4.1.6.3. Variations of the deep-level transient spectroscopy method
1.4.1.7. Principle of optical defect measurements
1.4.1.7.1. Intrinsic emission
1.4.1.7.2. Extrinsic emission
1.5. Metal/semiconductor contact
1.5.1. Parameters of metal/semiconductor contacts
1.5.2. Formation of metal/semiconductor contacts
1.5.2.1. Neutral contacts
1.5.2.2. Blocking contacts
1.5.2.3. Ohmic contacts
1.5.3. Widthλof the space charge region
1.5.4. Junction capacitance
1.5.5. Schottky effect
1.5.6. Schottky diode
1.6. Semiconductors under non-equilibrium conditions
1.6.1. Parameters of a semiconductor under non-equilibrium conditions
1.6.2. Recombination of carriers via recombination centers (Shockley–Read–Hall theory)
1.6.3. Transient relaxation current
1.7. Space charge current
1.7.1. The case of an ideal semiconductor. 1.7.1.1. A semiconductor without traps
1.7.1.2. A semiconductor containing traps
1.7.2. Trap-filled limit voltage
1.7.3. Discrete traps and trap distribution
1.8. Hopping conduction
2. Materials. 2.1. Introduction
2.2. Organic materials
2.2.1. Binding and hybridization of carbon
2.3. Conjugated polymers
2.3.1. Polyacetylene
2.3.2. Benzene
2.3.3. Deposition of polymer films
2.3.3.1. Deposition by spin-coating
2.3.3.2. Deposition by dipping
2.3.3.3. Deposition by doctor-blading
2.3.3.4. Deposition by spray-coating
2.3.3.5. Deposition by inkjet printing
2.3.3.6. Deposition by roll-to-roll printing
2.4. Energy bands
2.4.1. Concepts of solitons and polarons
2.4.2. Concept of doping
2.4.2.1. Chemical doping
2.4.2.2. Electrochemical doping
2.5. Small molecules
2.6. Design and engineering of organic materials
2.7. Hybrid materials or nanocomposites
2.7.1. Polymer matrix nanocomposites
2.7.2. Nanocomposites with nanomaterials
2.7.3. Preparation of nanocomposites
2.7.3.1. Dispersion method
2.7.3.2. Surface-modified method
2.7.3.3. Covalent bonded route method
2.7.3.4. In situ polymerization method
2.7.3.5. Use of nanostructured substrates
2.8. Transparent and conductive materials
2.8.1. Indium tin oxide
2.8.2. Fluorine-doped tin oxide
2.8.3. Other transparent oxide conductors
2.8.4. Other transparent conductive materials
2.8.4.1. PEDOT:PSS
2.8.4.2. Networks of conductive nanomaterials
2.8.4.2.1. Metal nanowires
2.8.4.2.2. Carbon-based nanomaterials
2.9. Materials for encapsulation
2.9.1. Glass slides
2.9.2. Hybrid multilayers
3. Optical Processes. 3.1. Introduction
3.2. Interaction between light and molecules. 3.2.1. Electronic transitions
3.2.2. Selection rules
3.2.2.1. Spin-forbidden transitions
3.2.2.2. The Franck–Condon principle
3.3. Optical processes. 3.3.1. Light absorption. 3.3.1.1. Absorption spectrum
3.3.1.2. Electronic transitions
3.3.1.3. Effects of aggregates
3.3.2. Light emission. 3.3.2.1. Kasha’s rule
3.3.2.2. Emission from a singlet state
3.3.2.3. Emission from a triplet state
3.3.2.4. Delayed fluorescence process
3.3.2.5. Mirror effect and Stokes shift
3.3.3. Perrin–Jablonski diagram
3.3.4. Quenching
3.3.4.1. Excimers and exciplexes
3.3.4.2. Resonance energy transfer
3.3.4.2.1. Radiative energy transfer
3.3.4.2.2. Non-radiative energy transfer
3.3.4.2.3. Selection rules
3.3.4.3. Oxidation reaction
3.3.4.4. Interchain interactions in conjugated polymers
3.4. Excitons
3.4.1. Classification of excitons
3.4.1.1. Frenkel excitons
3.4.1.2. Wannier–Mott excitons
3.4.1.3. Charge transfer excitons
3.4.2. Binding energy of excitons
3.4.3. Movement of excitons
3.4.4. Dissociation of excitons
3.5. Experimental techniques
3.5.1. UV–visible absorption spectroscopy
3.5.2. Photoluminescence spectroscopy
3.5.2.1. Steady-state photoluminescence
3.5.2.2. Time-resolved photoluminescence
3.5.2.2.1. Decay equation
3.5.2.2.2. Multiple decay process
3.5.3. Infrared and Raman spectroscopy. 3.5.3.1. Infrared spectroscopy
3.5.3.2. Raman spectroscopy
4. Electronic Processes. 4.1. Introduction
4.2. Charge carrier injection process
4.2.1. Injection mechanisms
4.2.1.1. Thermoionic emission or Schottky effect
4.2.1.2. Fowler–Nordheim effect
4.2.2. Hole or electron devices
4.2.3. Transport layers
4.3. Charge transport process
4.3.1. Hopping mechanisms
4.3.1.1. Miller–Abrahams model
4.3.1.2. Mott–Davis model
4.3.1.3. Charge carrier mobility
4.3.1.4. Measurements of charge carrier mobility
4.3.1.4.1. Time-of-flight technique
4.3.1.4.2. Charge extraction by linearly increasing voltage technique
4.3.2. Space-charge limited conduction
4.3.2.1. The case of discrete traps centered on an energy level ET
4.3.2.2. The case of an exponential distribution of traps
4.3.2.3. The case of a Gaussian distribution of traps
4.3.3. Defects and traps in organic semiconductors
4.3.3.1. The origin of defects in organic semiconductors
4.3.3.2. Study methodology of defects in organic SCs
4.3.3.3. Measurements of trap parameters
4.3.3.3.1. Thermally stimulated current technique
4.3.3.3.2. Deep-level transient spectroscopy
4.3.3.3.3. Impedance spectroscopy
4.3.3.3.4. Numerical or computer simulation of charge transport
5. Interface Processes. 5.1. Introduction
5.2. Formation of organic semiconductor/metal interfaces
5.2.1. Vacuum-level alignment model: Mott–Schottky theory
5.2.2. Interface dipole model: Bardeen’s theory
5.2.3. Characteristics of organic semiconductor/metal interfaces
5.2.4. Fermi-level pinning
5.2.5. Integer charge transfer process. 5.2.5.1. Conductive substrate/organic semiconductor interface
5.2.5.2. Organic semiconductor/organic semiconductor interface
5.3. Surface characterization techniques
5.3.1. Atomic force microscopy
5.3.2. X-ray photoelectron spectroscopy
5.3.3. UV photoelectron spectroscopy
5.4. Interface engineering
5.4.1. Inverted structure devices
5.4.2. Self-assembled monolayers
5.5. Conclusion
List of Acronyms. General Terms
Materials
References
Index. A, B, C
D, E, F
G, H, I
L, M, P
R, S, T
U, V, W, X
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Series Editor
.....
Thien-Phap Nguyen
This book, divided into two volumes, was written with the goal of introducing organic electronics to students and researchers who are interested in this new discipline. It is organized into the following sections: Chapter 1 of Volume 1 provides an overview of the basic notions of the theory of traditional semiconductors, of which some of the material presented will be used later on. The materials used for the creation of devices are described in Chapter 2. The physical processes, which take place in the volume and interface of the layers of devices, are presented and explained in Chapters 3, 4 and 5. Volume 2 presents the primary applications of organic materials in optoelectronic devices. The first chapter of this volume centers on organic light-emitting diodes (OLEDs), the second on organic solar cells (OSCs or OPVs) and the third on organic field-effect transistors (OFETs). Chapter 4 deals with the practical and economic aspects of the industrialization of organic components. It also includes a discussion on the environmental aspects of the use of organic materials and devices.
.....