The Rheology Handbook

The Rheology Handbook
Автор книги: id книги: 1835515     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18374,1 руб.     (200,2$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: Readbox publishing GmbH Дата добавления в каталог КнигаЛит: ISBN: 9783866305366 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Already in its 5th edition, this standard work describes the principles of rheology clearly, vividly and in practical terms. The book includes the rheology of additives in waterborne dispersions and surfactant systems. Not only it is a great reference book, it can also serve as a textbook for studying the theory behind the methods. The practical use of rheology is presented in the areas quality control, production and application, chemical and mechanical engineering, materials science and industrial research and development. After reading this book, the reader should be able to perform tests with rotational and oscillatory rheometers and interpret the results correctly.

Оглавление

Thomas Mezger. The Rheology Handbook

Foreword. Why was this book written?

How did this book come into existence?

What is the target audience for this book? For which industrial branches will it be most interesting?

1Introduction. 1.1Rheology, rheometry and viscoelasticity. a) Rheology

b) Rheometry

c) Appendix

d) Information for “Mr. and Ms. Cleverly”

1.2Deformation and flow behavior

Experiment 1: Behavior of mineral oil , plasticine, and steel

Experiment 2: Playing with “bouncing putty ” (some call it “Silly Putty”)

Experiment 3: Do the rods remain in the position standing up straight?

Summary

1.3References

2Flow behavior and viscosity

2.1Introduction

2.2Definition of terms

Experiment 1: The stack of beer mats

2.2.1Shear stress

2.2.2Shear rate

a) Definition of the shear rate using differential variables

b) Calculation of shear rates occurring in technical processes

1) Coating processes: painting, brushing, rolling or blade-coating

Examples. 1a) Painting with a brush:

1b) Buttering bread:

1c) Applying emulsion paint with a roller

2) Flow in pipelines, tubes and capillaries

Examples. 2a) Pipeline transport of automotive coatings [2.8][2.9]

2b) Drinking water supply, transport in pipelines [2.10]

2c) Filling bottles using a filling machine (e. g. drinks in food industry):

2d) Squeezing an ointment out of a tube (e. g. pharmaceuticals):

2e) Filling ointment into tubes using a filling machine (e. g. medicine):

2f) Transport process of a stucco gypsum suspension during production of architectural plates [2.11]

3) Sedimentation of particles in suspensions

Examples. 3a) Sedimentation of sand particles in water

3b) Sedimentation of sand particles in water containing a thickener

2.2.3Viscosity

a) Shear viscosity

b) Kinematic viscosity

Example. Conversion of the values of kinematic viscosity and shear viscosity

2.3Shear load-dependent flow behavior

Experiment 2: The double-tube test, or the contest of the two fluids (see Figure 2.4)

2.3.1Ideal-viscous flow behavior. a) Viscosity law

Examples of ideal-viscous materials

b) The dashpot model

Ideal-viscous flow behavior, explained by the behavior of a dashpot. 1) When under load

2) When removing the load

Summary: Behavior of the dashpot model

Comparison: Dashpot fluid and viscosity law

Note: Viscous behavior, viscous shear-heating , and lost deformation energy

2.4Types of flow illustrated by the. Two-Plates model

2.5References

3Rotational tests

3.1Introduction

3.2Basic principles. 3.2.1Test modes-controlled shear rate (CSR) and controlled shear stress (CSS), raw data and rheological parameters. a) Tests with controlled shear rate (CSR tests)

b) Tests with controlled shear stress (CSS tests)

Examples from nature

3.3Flow curves and viscosity functions

3.3.1Description of the test. Preset

a) Extended test programs (including intervals at rest, for temperature equilibration, and pre-shear)

Example 1: Testing resins

Example 2: Testing chocolate melts (at the test temperature T = +40 °C)

b) Time-dependent effects, steady-state viscosity and transient viscosity (at low shear rates)

Illustration, using the Two-Plates model (see also Figure 2.9, no.5)

Example 1: Useful measuring point duration to avoid transient effects

Example 2: Suggestions for test profile presets, with γ ̇ (t) as a ramp function. 1) Linear preset

2) Logarithmic preset

Example 3: Occurrence of a “transient viscosity peak” when presetting a too short measuring point duration in the low-shear range (e. g. when testing dispersions and gels)

Summary: When testing dispersions and gels

3.3.2Shear-thinning flow behavior

Examples of shear-thinning materials

Note 1: Shear-thinning, time-dependent and independent of time

Note 2: Very simple evaluation methods

3.3.2.1Structures of polymers showing shear-thinning behavior. The entanglement model

a) Shear range 1 at low-shear conditions: the “low-shear range”

Superposition of two processes

Summary of this superposition

1) Zero-shear viscosity in mathematical notation

2) Dependence of η0 on the polymer concentration c

3) Dependence of η0 on the average molar mass M [3.9][3.10]

b) Shear range 2 at medium shear rates: the “flow range”

c) Shear range 3 at high-shear conditions: the “high-shear range”

Infinite-shear viscosity in mathematical notation

3.3.2.2Structures of dispersions showing shear-thinning behavior

3.3.3Shear-thickening flow behavior. Experiment 3.1: Shear-thickening of a plastisol dispersion (see Figure 3.14)

Examples of shear-thickening materials

Example 1: Plastisols in automotive industry

Example 2: Paper coatings

Example 3: Hair shampoos containing surfactant superstructures

Example 4: Shear-induced or flow-induced dilatant behavior of elastomers

Example 5: “Nano-fluids” or “smart fluids” for shock-resistant or bullet-proof materials

Example 6: Turbulent flow of water

3.3.3.1Structures of uncrosslinked polymers showing. shear-thickening behavior

3.3.3.2Structures of dispersions showing shear-thickening behavior

Illustration, using the Two-Plates model (see Figure 2.1)

Example: Creaming effect of pharmaceuticals and cosmetic products

3.3.4Yield point. Experiment 3.2: Squeezing toothpaste out of the tube (see Figure 3.20)

Experiment 3.3: Sticking rods into hand cream and silicone

3.1.2.1.3Examples of materials which may show a yield point

3.3.4.1Yield point determination using the flow curve diagram

3.3.4.2Further information on yield points. 3.3.4.2.1a) Time-dependence of the yield point

3.3.4.2.2b) Interaction forces and network of forces

3.3.4.2.3c) Plastic behavior

3.3.4.2.4Example 1: Plastic behavior of metals for cold forging processes

3.3.4.2.5Example 2: Plastic deformation of the landscape and soil flow (solifluction )

3.3.4.2.6Example 3: Plastic land subsidence caused by mining or dike construction

3.3.4.2.7Example 4: Plastic flow of debris and mud avalanches in the mountains

3.3.4.2.8Illustration, using the Two-Plates model (see Figure 2.9: no. 4)

3.3.4.2.9Examples of plastic materials

3.3.4.2.10Summary

3.3.4.2.11Note by the way

3.3.4.2.12d) Practical example: Yield point and wet layer thickness of a coating

3.3.4.2.13Summary

3.3.4.2.14Examples

3.3.5Overview: flow curves and viscosity functions

3.1.2.1.1a) Diagrams on a linear scale

3.1.2.1.2b) Diagrams on a logarithmic scale

3.1.2.1.3c) Three-dimensional diagrams of flow curves and viscosity functions

3.3.6Fitting functions for flow and viscosity curves

3.3.6.1Model function for ideal-viscous flow behavior. according to Newton

3.3.6.2Model functions for shear-thinning and shear-thickening flow behavior

3.3.6.2.1a) Ostwald/de Waele, or power-law: τ = c ⋅ γ ̇ p

3.3.6.2.2b) Steiger/Ory: γ ̇ = c1 ⋅ τ + c2 ⋅ τ3

3.3.6.2.3c) Eyring/Prandtl/Ree or Ree-Eyring: γ ̇ = c1 ⋅ sinh(τ/c2)

3.3.6.3Model functions for flow behavior with zero-shear viscosity and infinite-shear viscosity

3.3.6.3.1a) Cross:

3.3.6.3.2b) Carreau:

3.3.6.3.3c) Krieger/Dougherty:

3.3.6.3.4d) Vinogradov/Malkin:

3.3.6.3.5e) Ellis and Sisko:

3.3.6.3.6f) Exponential or e-function: η( γ ̇ ) = η0 ⋅ exp (–c ⋅ γ ̇ )

3.3.6.3.7g) Philipps/Deutsch:

3.3.6.3.8h) Reiner/Philippoff:

3.3.6.4Model functions for flow curves with a yield point

3.3.6.4.11) “Yield stress” (YS) using a straight line through two measuring points

3.3.6.4.2Example: with nH = 100, nL = 10, DRH = 50, DRL = 40, then: YS is read off as 38. 3.3.6.4.32) “Plasticity index” (PI)

3.3.6.4.4Example: with nH, nL, DRH, DRL and YS as above, then:

3.3.6.4.5b) Casson:

3.3.6.4.6c) Herschel/Bulkley:τ = τHB + c ⋅ γ ̇ p

3.3.6.4.7d) Windhab:τ = τ0 + (τ1 - τ0) ⋅ [1 – exp (- γ ̇ / γ ̇ *)] + η∞ ⋅ γ ̇

3.3.6.4.8e) Tscheuschner:τ = τ0 + c1 ⋅ γ ̇ p + c2 ⋅ γ ̇

3.3.6.4.9f) Polynomials

3.3.6.4.10Example: third order polynomial τ = c1 + c2 ⋅ γ ̇ + c3 ⋅ γ ̇ 2 + c4 ⋅ γ ̇ 3

3.3.7The effects of rheology additives. in water-based dispersions

3.1.2.1.1a) Water-based dispersions containing clay as the thickening agent

3.1.2.1.2b) Water-based dispersions containing dissolved polymer as the thickening agent

3.1.2.1.3d) Water-based polymer dispersion containing an associative thickener

3.4Time-dependent flow behavior and. viscosity function

3.4.1Test description. 3.1.2.1.1Preset

3.1.2.1.2Measuring result

3.4.2Time-dependent flow behavior of samples. showing no hardening

3.1.2.1.1Example: Testing lubricating grease (according to DIN 51810-1)

3.4.2.1Structural decomposition and regeneration (thixotropy and rheopexy) 3.4.2.1.1a) Thixotropic behavior. 3.4.2.1.2Experiment 3.4: Shaking bottles containing ketchup and paraffin oil

3.4.2.1.3Examples of thixotropic materials

3.4.2.1.4b) Non-thixotropic behavior. 3.4.2.1.5Experiment 3.5: Stirring yogurt

3.4.2.1.6c) Rheopectic behavior

3.4.2.1.7Examples of rheopectic materials

3.4.2.1.8Example: Testing a dispersion under the following conditions

3.4.2.2Test methods for investigating thixotropic behavior

3.4.2.2.1a) Step test consisting of three intervals

3.4.2.2.2Example 1: Presetting shear rates for all intervals

3.4.2.2.3Example 2: Presetting shear stresses for all intervals

3.4.2.2.4Example

3.4.2.2.5Example (to method M3): Testing PVC plastisol pastes

3.4.2.2.6Example (to method M4): Comparison of two coatings

3.4.2.2.7b) Flow curves and hysteresis area (for evaluating thixotropic behavior)

3.4.2.2.8Example 1: Preset of the shear rate

3.4.2.2.9Example 2: Preset of the shear stress

3.4.2.2.10Measuring result

3.4.2.2.11c) Very simple evaluation methods (for evaluating thixotropic behavior)

3.4.3Time-dependent flow behavior of samples. showing hardening

3.1.2.1.1a) Gelation time and gel time, gel point and gelation point

3.1.2.1.2Example 1: Testing epoxy resins

3.1.2.1.3Example 2: The isothermal viscosity development of reactive resin mixtures (acc. to DIN 16945)

3.1.2.1.4Example 3: The gelation time of reaction resins, when reaching the thousandfold viscosity value

3.1.2.1.5b) Comparison of controlled shear rate (CSR) , and controlled shear stress (CSS) tests

3.5Temperature-dependent flow behavior and viscosity function

3.5.1Test description

3.5.2Temperature-dependent flow behavior of samples showing no hardening

3.5.3Temperature-dependent flow behavior of samples showing hardening

3.1.2.1.1Examples (here in alphabetic order):

3.5.4Fitting functions for curves of the. temperature-dependent viscosity

3.1.2.1.1a) Arrhenius relation, flow activation energy EA, and Arrhenius curve

3.1.2.1.2b) Viscosity/temperature shift factor aT, and Arrhenius plot

3.1.2.1.3Example: Calculation of flow activation energy and viscosity/temperature shift factor of a mineral oil, and determination of viscosity values at further temperatures

3.6Pressure-dependent flow behavior and viscosity function

3.2.1.1.1Viscosity/pressure shift factor ap

3.2.1.1.2Example 1: Calculation of viscosity/pressure coefficient and shift factor of a mineral oil, and determination of viscosity values at further pressures

3.2.1.1.3Example 2: Calculation of the viscosity/pressure coefficient of a crude oil

3.7References

4Elastic behavior and. shear modulus

4.1Introduction

4.2Definition of terms

4.2.1Deformation and strain

4.2.2Shear modulus

4.3Shear load-dependent. deformation behavior. 4.2.1.1.1Experiment 4.1: Playing with a spiral spring

4.2.1.1.2Experiment 4.2: Playing with a steel ball

4.3.1Ideal-elastic deformation behavior. 4.1.2.1.1a) Elasticity law

4.1.2.1.2b) The spring model

4.1.2.1.3Ideal-elastic behavior, explained by the behavior of a spring. 4.1.2.1.41) When under load

4.1.2.1.52) When removing the load

4.4Yield point determination using the shear stress/deformation diagram. 4.2.1.1.1a) Yield point at the limit of the linear-elastic range, using a single fitting line

4.2.1.1.2b) Yield point by the “tangent crossover method”, using two fitting lines

4.2.1.1.3c) Yield zone (flow transition range)

4.2.1.1.4d) Yield point and flow point in the shear stress/deformation diagram

4.2.1.1.5e) Yield point by the method of maximum deviation from the fitting line

4.5References

5Viscoelastic behavior

5.1Introduction

5.2Basic principles. 5.2.1Viscoelastic liquids according to Maxwell. 5.1.2.1.1Experiment 5.1: The thickened liquid in a glass beaker

5.1.2.1.25.2.1.1The Maxwell model

5.1.2.1.3a) Viscoelastic flow behavior , illustrated by use of the Maxwell model (see Figure 5.2): 5.1.2.1.41) Before applying a load

5.1.2.1.52) When under load

5.1.2.1.63) When removing the load

5.1.2.1.7b) Differential equation according to the Maxwell model

5.1.2.1.85.2.1.2Examples of the behavior of VE liquids in practice. 5.1.2.1.9a) Die swell, or post-extrusion swelling effect (see Figure 5.3) 5.1.2.1.10Experiment 5.2: Extrusion, using a small toy extruder, producing spaghetti-like strands

5.1.2.1.11Examples: Materials showing die swell

5.1.2.1.12b) The Weissenberg effect when stirring. 5.1.2.1.13Experiment 5.3: The two stirrer vessels, containing water and a polymer solution (Figure 5.4)

5.1.2.1.14Examples: Materials showing the Weissenberg effect

5.1.2.1.15c) Tack and stringiness when performing coating processes

5.1.2.1.16d) Mouth sensation

5.2.2Viscoelastic solids according to Kelvin/Voigt. 5.1.2.1.1Experiment 5.4: Breaking behavior of a silicone rubber with a low degree of crosslinking

5.1.2.1.2Experiment 5.5: Comparison of two rubber balls

5.1.2.1.35.2.2.1 The Kelvin/Voigt model

5.1.2.1.4a) Viscoelastic behavior, illustrated by use of the Kelvin/Voigt model (see Figure 5.7): 5.1.2.1.51) Before applying a load

5.1.2.1.62) When under load

5.1.2.1.73) When removing the load

5.1.2.1.8b) Differential equation according to the Kelvin/Voigt model

5.1.2.1.95.2.2.2Examples of the behavior of VE solids in practice

5.1.2.1.10Elastic behavior

5.1.2.1.11Viscous behavior

5.1.2.1.12Examples from daily practice: 5.1.2.1.13a) Rubber buffers, and damping of mechanical vibrations

5.1.2.1.14b) Noise protection, and damping of sound waves

5.1.2.1.15c) Car tires, deformation energy and viscous heating

5.1.2.1.16d) Automotive bumpers

5.1.2.1.17e) Shock absorbers, and the Kelvin/Voigt model

5.1.2.1.18f) Equipment for sportive activities, and viscoelastic properties

5.1.2.1.19g) Biological materials, and synthetic “bio-materials”

5.1.2.1.20h) Haptic perception (haptics) of the consistency of a material, or of a system

5.3Normal stresses

5.4References

6Creep tests

6.1Introduction

6.2Basic principles. 6.2.1.1.1Experiment 6.1: Creep and reverse creep of a hot-melt adhesive

6.2.1Description of the test. 6.1.2.1.1Preset: Shear stress step function τ(t), see Figure 6.1

6.1.2.1.2Example: Test preset for a polymer sample

6.2.2Ideal-elastic. behavior

6.2.3Ideal-viscous. behavior

6.2.4Viscoelastic. behavior

6.3Analysis. 6.3.1Behavior of the molecules

6.1.2.1.1a) At rest, before the step in stress

6.1.2.1.2b) Under constant stress, in the creep phase

6.1.2.1.3c) After releasing the stress, in the creep recovery phase

6.3.2The Burgers model

6.3.3Curve discussion

6.1.2.1.1a) Creep curve

6.1.2.1.2b) Creep recovery curve

6.3.4Definition of terms. 6.3.4.1Zero-shear viscosity

6.3.4.1.1a) Determination of the value of zero-shear viscosity via creep curves

6.3.4.1.2b) Zero-shear viscosity and average molar mass

6.3.4.1.3c) Comparison: different methods to determine η0

6.3.4.2Creep compliance , and creep recovery compliance

6.3.4.2.1a) Instantaneous compliance

6.3.4.2.2b) Creep recovery, and equilibrium compliance

6.3.4.2.3c) Determination of the limiting value of the LVE range

6.3.4.3Retardation time

6.3.4.3.1a) Retardation time Λ in the Kelvin/Voigt model

6.3.4.3.2b) Retardation time Λ in the Burgers model

6.3.4.4Retardation time spectrum

6.3.4.4.1a) Generalized Kelvin/Voigt model

6.3.4.4.2b) Discrete retardation time spectrum

6.3.4.4.3c) Continuous retardation time spectrum

6.3.5Data conversion

6.1.2.1.1Example: Conversion of creep test data to frequency sweep data

6.3.6Determination of the molar mass distribution

6.4Determination of the yield point. via creep tests

6.2.1.1.1Example: Determination of the yield point of a bentone suspension

6.5References

7Relaxation tests

7.1Introduction

7.2Basic principles. 7.2.1Description of the test

7.1.2.1.1Example: Test preset for a polymer sample

7.2.2Ideal-elastic behavior. 7.1.2.1.1Experiment 7.1: Twisting an eraser

7.2.3Ideal-viscous behavior

7.2.4Viscoelastic behavior. 7.1.2.1.1Experiment 7.3: Rotating a spatula in a silicone polymer

7.3Analysis. 7.3.1Behavior of the molecules

7.1.2.1.1a) At rest, before the step in strain

7.1.2.1.2b) Performing the step in strain

7.1.2.1.3c) In the stress relaxation phase

7.3.2Curve discussion. 7.1.2.1.1a) Before the effective strain step

7.1.2.1.2b) During the strain step

7.1.2.1.3c) Stress relaxation curve

7.3.3Definition of terms. 7.3.3.1Relaxation modulus

7.3.3.1.1a) Instantaneous shear modulus

7.3.3.1.2b) Equilibrium shear modulus

7.3.3.1.3c) Determination of the limiting value of the LVE range

7.3.3.2Relaxation time

7.3.3.3Relaxation time spectrum

7.3.3.3.1a) Generalized Maxwell model

7.3.3.3.2b) Discrete relaxation time spectrum

7.3.3.3.3c) Continuous relaxation time spectrum

7.3.4Data conversion

7.1.2.1.1Examples. 7.1.2.1.21) Relaxation modulus G(t)  frequency functions G’ & G’’(ω)

7.1.2.1.32) Frequency functions G’ & G’’(ω)  relaxation modulus G(t)

7.1.2.1.43) Frequency functions G’ & G’’ at high ω-values  G(t) or J(t)

7.1.2.1.54) Frequency functions G’ & G’’ at low ω-values  relaxation modulus G(t)

7.1.2.1.65) Creep compliance J(t)  relaxation modulus G(t)

7.3.5Determination of the molar mass. distribution

7.4References

8Oscillatory tests

8.1Introduction

8.2Basic principles

8.2.1Ideal-elastic behavior

8.2.2Ideal-viscous behavior

8.2.3Viscoelastic behavior. 8.1.2.1.1Preset

8.1.2.1.2Measuring result

8.2.4Definition of terms. 8.1.2.1.1a) Complex shear modulus, storage modulus, loss modulus, and loss factor

8.1.2.1.2 Note 1: The sol/gel transition point (gel point), and tanδ

8.1.2.1.3Note 2: Tack and stringiness, and tanδ

8.1.2.1.4Example: Stringiness of adhesives, and tanδ

8.1.2.1.5Note 3: Meltability of cheese and tanδ

8.1.2.1.61) Notation of G’ and G’’ in terms of sine and cosine functions

8.1.2.1.72) Vector diagram illustrating G*, G’, G’’ and tanδ

8.1.2.1.8b) The complex viscosity , its real and imaginary parts

8.1.2.1.91) Notation of η’ and η’’ in terms of sine and cosine functions. 8.1.2.1.10Real part of the complex viscosity

8.1.2.1.11Imaginary part of the complex viscosity

8.1.2.1.122) Vector diagram illustrating η*, η’, η’’ and tanδ

8.1.2.1.13Note 1: Elastic behavior in terms of G’ or η’’, and viscous behavior as G’’ or η’

8.1.2.1.14Note 2: The term (absolute) dynamic viscosity

8.1.2.1.15Note 3: Unusual terms used for η’ and η’’

8.1.2.1.16c) Presentation of the parameters in complex notation

8.1.2.1.17d) Conversion between shear deformation (or shear strain) and shear rate (or strain rate)

8.2.5The test modes controlled shear strain and controlled shear stress, raw data and rheological parameters

8.1.2.1.1a) Tests with controlled shear strain, also called “controlled shear deformation” CSD

8.1.2.1.2b) Tests with controlled shear stress (CSS tests)

8.1.2.1.3c) Recommendation: Scaling of diagrams showing measuring curves

8.1.2.1.4 d) Recommendation: Specification of parameters in test protocols (data tables)

8.3Amplitude sweeps

8.3.1Description of the test

8.1.2.1.1Note 2: Three-dimensional diagrams of amplitude sweeps at different temperatures

8.1.2.1.2Note 3: Test preparation: Thermal-stability time of polymer melts

8.1.2.1.3a) Gel-like state or solid state, if G’ > G’’

8.1.2.1.4b) Liquid state like fluids or sols, if G’’ > G’

8.1.2.1.5c) At the gel point, if G’ = G’’ in the LVE range

8.3.2Limiting value of the LVE range

8.1.2.1.1a) Visual or manual analysis

8.1.2.1.2b) Automatic analysis using a software analysis program

8.3.2.1Limiting value of the LVE range in terms of the shear strain

8.3.2.1.1Example 1 (to Note 3): Types of structures of lube greases, and the G’’ peak [8.77]

8.3.2.1.2Example 2 (to Note 3): Comparison of foam systems via the G’’-maximum [8.76]

8.3.2.1.3Example 3 (to Note 3): Solid polymers, formation of micro-cracks, and the G’’ curve

8.3.2.1.4Example 4 (to Note 3): Two maxima in the G’’ curve of a colloidal suspension with a gel-like structure, [8.79]

8.3.2.2Limiting value of the LVE range in terms of the shear stress

8.3.3Determination of the yield point and the flow point by amplitude sweeps

8.3.3.1Yield point or yield stress τy

8.3.3.1.1a) Visual or manual analysis of the yield point

8.3.3.1.2b) Automatic analysis of the yield point using a software program

8.3.3.2Flow point or flow stress τf

8.3.3.3Yield zone between yield point and flow point

8.3.3.3.1Example: The flow point and the flow transition index of lube grease (acc. to DIN 51810-2) [8.19][8.77]

8.3.3.4Evaluation of the two terms yield point and flow point

8.3.3.5Measuring programs in combination with amplitude sweeps

8.3.3.5.1Example 1: Amplitude sweep upwards and downwards for testing plastisols in. automotive industry

8.3.3.5.2Example 2: Combination of rotation, amplitude sweep and a shear phase for testing automotive adhesives

8.3.4Frequency-dependence of amplitude sweeps

8.1.2.1.1Example 1 (to Note 3): An adhesive, flowing at high frequencies but not at low ones

8.1.2.1.2Example 2 (to Note 3): Offset printing inks, solid at low frequencies but liquid at higher ones

8.3.5SAOS and LAOS tests, and Lissajous diagrams. 8.1.2.1.1a) Linear behavior in the LVE range and SAOS tests

8.1.2.1.2b) Non-linear behavior in the NL range and LAOS tests

8.1.2.1.3Examples of applications: complex materials

8.4Frequency sweeps

8.2.1.1.1Experiment 8.1: Bouncing or spreading of putty (PDMS)

8.2.1.1.21) Short-term behavior

8.2.1.1.32) Long-term behavior

8.4.1Description of the test

8.1.2.1.1Measuring result

8.4.2Behavior of uncrosslinked polymers (solutions and melts)

8.4.2.1The single Maxwell model for polymers showing a narrow molar mass distribution (MMD)

8.4.2.1.1a) Discussion of curves of polymers (solutions or melts) showing a narrow MMD

8.4.2.1.2b) Interpretation of frequency sweeps of uncrosslinked polymers

8.4.2.2The generalized Maxwell model for polymers showing a wide MMD

8.4.2.2.1a) Curve discussion for polymers showing a wide MMD (see Figure 8.19):

8.4.2.2.2b) Comparison of polymers concerning molar mass and MMD

8.4.2.2.3c) Optional methods to analyze frequency sweeps on polymers

8.4.3Behavior of crosslinked polymers

8.1.2.1.1a) Polymers showing a high degree of crosslinking

8.1.2.1.2Experiment 8.2: Bouncing rubber balls, and the damping factor tanδ

8.1.2.1.3b) Polymers showing a low degree of crosslinking

8.1.2.1.4c) Comparison of crosslinked and uncrosslinked polymers

8.4.4Behavior of dispersions and gels

8.1.2.1.1a) Structural strength at rest, dispersion stability, yield point, dimension stability, and frequency sweeps

8.1.2.1.2Example 1: Stability of uncured PU adhesives, evaluation via frequency sweeps

8.1.2.1.3Example 2: Specification of dispersion stability in terms of G’ instead of a yield point

8.1.2.1.4Example 3: Low-shear test for varnishes, instead of yield point tests via rotation

8.1.2.1.5b) Dispersion stability outside the LVE range. 8.1.2.1.6Example: Transport stability of dispersions

8.4.5Comparison of superstructures using frequency sweeps

8.4.6Multiwave test

8.4.7Data conversion

8.5Time-dependent behavior at. constant dynamic-mechanical and. isothermal conditions

8.5.1Description of the test

8.5.2Time-dependent behavior of samples showing. no hardening

8.5.2.1Structural decomposition and regeneration (thixotropy and rheopexy) 8.5.2.1.1a) Thixotropic behavior

8.5.2.1.2b) Rheopectic behavior

8.5.2.2Testing methods for investigating thixotropic behavior. 8.5.2.2.1a) Step test consisting of three intervals

8.5.2.2.2Example 1

8.5.2.2.3Note 1: Optimizing the step test conditions

8.5.2.2.4Note 2: Advantages of oscillatory tests over rotational tests

8.5.2.2.5Optional methods to analyze structural regeneration

8.5.2.2.6Example (to method M5): Comparison of two coatings

8.5.2.2.7b) Step test consisting of three intervals: oscillation/rotation/oscillation (ORO-test)

8.5.2.2.8Example of a preset

8.5.2.2.9c) Evaluating rheopectic behavior: step test consisting of three intervals in oscillation

8.5.3Time-dependent behavior of samples. showing hardening

8.1.2.1.1a) The onset of curing, and development of a chemical crosslinking reaction

8.1.2.1.2b) The sol/gel transition point, gel time, and gel point

8.1.2.1.3c) Further Notes and Examples. 8.1.2.1.4Eample 1: Testing an epoxy resin

8.1.2.1.5Example 2: Testing a solid coating layer after curing

8.1.2.1.6Example 3: The gelation time of reaction resins, when reaching the thousendfold of the G‘-value

8.6Temperature-dependent behavior at. constant dynamic mechanical conditions

8.6.1Description of the test

8.6.2Temperature-dependent behavior of samples. showing no hardening

8.6.2.1Temperature curves and structures of polymers

8.6.2.1.1a) Amorphous polymers

8.6.2.1.2b) Partially crystalline polymers

8.6.2.1.3Temperature curves of partially crystalline polymers (see Figure 8.40)

8.6.2.1.4c) Crosslinked polymers

8.6.2.2Temperature-curves of dispersions and gels. 8.6.2.2.1a) Softening, melting, solidification, crystallization, and freezing temperature

8.6.2.2.2b) Freeze-thaw-cycle tests for testing temperature stability of emulsions

8.6.3Temperature-dependent behavior of samples. showing hardening

8.1.2.1.1a) Onset of curing, and development of a chemical crosslinking reaction

8.1.2.1.2b) Melting temperature, sol/gel transition temperature, gel temperature and gel point

8.1.2.1.3c) The minimum viscosity

8.1.2.1.4d) Further Notes and Examples

8.1.2.1.5Example 2: The gelation temperature of reaction resins, when reaching the thousendfold of the G‘-value (or alternatively: value of the complex viscosity)

8.6.4Thermoanalysis (TA)

8.1.2.1.1a) DSC (differential scanning calorimetry)

8.1.2.1.2b) OIT (oxidative induction time)

8.1.2.1.3c) TG (thermogravimetry)

8.1.2.1.4d) TMA (thermo-mechanical analysis)

8.1.2.1.5e) DMA (dynamic-mechanical analysis)

8.7Time/temperature shift

8.7.1Temperature shift factor according to the WLF method

8.1.2.1.1a) Horizontal shift factor aT and the master curve

8.1.2.1.2 Example 1: Shifting the frequency-dependent parameters G’, G’’, G*, and |η*|

8.1.2.1.3Example 2: Shifting shear rate-dependent parameters

8.1.2.1.4Example 3: Shifting time-dependent parameters

8.1.2.1.5b) Time/temperature shift using the WLF relation

8.1.2.1.6The WLF shift factor

8.1.2.1.7c) Determination of the individual shift factors aTi. 8.1.2.1.81) Manual determination using the WLF diagram

8.1.2.1.9Example 1 (second section): Determination of the shift factors of the curves of G’ and G’’ at selected temperatures

8.1.2.1.10Example 2 (first section): Determination of the shift factors of the available measuring data of η0

8.1.2.1.11Example 2 (second section): Determination of the shift factors of η0-curves at selected temperatures

8.1.2.1.122) Automatic determination of aT and bT using an analysis software

8.1.2.1.13Example 3: Acoustic damping behavior of technical rubber

8.1.2.1.14d) Inverse master curve

8.1.2.1.15 e) Data conversion

8.8The Cox/Merz relation

8.2.1.1.1Scope of the Cox/Merz relation

8.9Combined rotational and oscillatory tests. 8.9.1Presetting rotation and oscillation in series

8.1.2.1.1Example 1: Test consisting of three intervals in the form of an O-R-O series

8.1.2.1.2Example 2: Test with seven intervals in series to get a fast overview (as a “fingerprint”)

8.9.2Superposition of oscillation and rotation

8.1.2.1.1Example 1: Testing leveling behavior of an emulsion paint by superposition of O & R

8.1.2.1.2 Description of the test. 8.1.2.1.3 1) Pre-test

8.1.2.1.42) Sole oscillation

8.1.2.1.53) Superposition of O & R

8.1.2.1.6Practical example (to Example 1): Emulsion paint (see Table 8.9)

8.1.2.1.7Example 2: Drilling fluids at pulsing flow conditions

8.10References

9Complex behavior, surfactant systems

9.1Surfactant systems. 9.1.1Surfactant structures and micelles. 9.1.2.1.1a) Surfactant molecules

9.1.2.1.2b) Superstructures of surfactants (micelles) in aqueous solutions, dispersions and gels

9.1.2.1.3c) Spherical micelles

9.1.2.1.4d) Rod-like, cylindrical and worm-like micelles

9.1.2.1.5e) Planar sheet micelles (lamellae)

9.1.2.1.6Single bilayers of surfactants

9.1.2.1.7Example: Bio-membranes

9.1.2.1.8Multiple layer systems of bilayer lamellae

9.1.2.1.9f) Vesicles as hollow spheres showing a single surfactant bilayer

9.1.2.1.10Example 1: Biological vesicles, liposomes

9.1.2.1.11Example 2: Vesicle systems as “capsules in the capsule”

9.1.2.1.12Example 3: Microspheres or microcapsules in food

9.1.2.1.13Example 4: “Self-healing” or self-repairing coatings

9.1.2.1.14Example 5: Functional coatings with a reversibly switchable wettability

9.1.2.1.15Vesicles showing multiple surfactant bilayers

9.1.2.1.16Comment: Vesicles and transporters in bioscience

9.1.2.1.17Example: SEDDS (self-emulsifying drug delivery systems) used as drug transporters

9.1.2.1.18g) Complex superstructures

9.1.2.1.19h) Micelle structures in the. sol-state and in the gel-state

9.1.2.1.20Example 1: Hydrogels used for reproduction of artificial tissues which are similar to biological ones [9.19]

9.1.2Emulsions

9.1.2.1.1a) Oil-in-water emulsions (o/w)

9.1.2.1.2Examples: o/w emulsions

9.1.2.1.3b) Water-in-oil emulsions (w/o)

9.1.2.1.4Examples: w/o emulsions

9.1.2.1.5 c) w/o/w and o/w/o emulsions

9.1.3Mixtures of surfactants and polymers, polymers containing surfactant components

9.1.2.1.1Example 1: Surfactants for stabilizing latex particles in a water-based dispersion

9.1.2.1.2Example 2: Surfactants building bridges between polymer molecules

9.1.2.1.3Example 3: Associative. thickeners of dispersions as polymers containing surfactant components

9.1.2.1.4Example 4: Dispersions containing. associative polymers and surfactants

9.1.2.1.5Example 5: Bio-materials, spider silk via hydrophilic and hydrophobic zones of proteins

9.1.2.1.6E5a) Proteins in the state of storage within the body of a spider, in the form of mono- disperse micelles in an aqueous solution

9.1.2.1.7E5b) Destabilization and aggregation of protein micelles

9.1.2.1.8E5c) Fiber formation by spontaneous self-organization of the proteins during the spinning process

9.1.2.1.9Mechanical properties of spinning fibers, and their environmental sustainability

9.1.2.1.10Example 6: Mucus in the human body

9.1.4Applications of surfactant systems

9.1.2.1.1Consumer and home care products, detergents

9.1.2.1.2Personal care, health and beauty care products, cosmetics

9.1.2.1.3Life sciences, pharmaceuticals, bio-tech

9.1.2.1.4Food technology

9.1.2.1.5Surface treatment, paints and “smart coatings”

9.1.2.1.6Petrochemical industry, mining, transportation in pipe lines

9.1.2.1.7Agrochemicals, crop science

9.2Rheological behavior of. surfactant systems

9.2.1.1.1Note: Surfactants, and measurement of the rheological behavior at interfaces

9.2.1Typical shear behavior. 9.1.2.1.1Ideal-viscous flow behavior

9.1.2.1.2Shear-thinning flow behavior

9.1.2.1.3Viscoelastic behavior

9.1.2.1.4Behavior of viscoelastic liquids

9.1.2.1.5Behavior of viscoelastic solids, gel-like structures

9.1.2.1.6Time-dependent structural regeneration , and thixotropic behavior

9.2.2Shear-induced effects, shear-banding and “rheo chaos ”

9.1.2.1.1a) Reasons for shear-induced structures

9.1.2.1.2b) Effects on the flow type

9.1.2.1.3c) Results when measuring deformation and flow behavior

9.1.2.1.4Examples of materials which may show shear-banding

9.1.2.1.5Note: Rheo-optical observation of micelle structures in a flow field

9.1.2.1.6Example 1: Shear-induced structural modifications in colloidal protein dispersions [9.41]

9.1.2.1.7Example 2: Rheo-optical observation of flow velocity profiles

9.3References

10Measuring systems. 10.1Introduction

10.2Concentric cylinder measuring systems (CC MS) 10.2.1Cylinder measuring systems in general. 10.2.1.1Geometry of cylinder measuring systems showing a large gap

10.2.1.1.1Note: Materials used for cylinder measuring systems

10.2.1.2Operating methods

10.2.1.2.1a) Searle method

10.2.1.2.2b) Couette method

10.2.1.3Calculations

10.2.1.3.1 a) Shear stress in a large cylinder gap

10.2.1.3.2b) Shear rate in a large cylinder gap

10.2.1.3.3c) The viscosity in a large cylinder gap

10.2.2Narrow-gap concentric cylinder measuring systems according to ISO 3219

10.2.2.1Geometry

10.2.2.1.1a) The standard geometry: Ratio of the radii of cup and bob

10.2.2.1.2 Note 1: ISO specifies only the ratio of the radii

10.2.2.1.3Note 2: Denomination of the ratio of the radii as δcc (and not as δ)

10.2.2.1.4b) The standard geometry: Cylinder dimensions according to ISO and DIN

10.2.2.2Calculations

10.2.2.2.1a) The representative shear stress in a narrow cylinder gap

10.2.2.2.2Summary for practical users in order to select the optimal MS geometry

10.2.2.2.3b) The representative shear rate in a narrow cylinder gap

10.2.2.2.4Summary for practical users in order to select the optimal MS geometry

10.2.2.2.5Note: The shear rate range in the gap of an ISO cylinder MS

10.2.2.2.6c) The representative shear viscosity in a narrow cylinder gap

10.2.2.3Conversion between raw data and rheological parameters. 10.2.2.3.1a) Torque M and shear stress τ

10.2.2.3.2b) Rotational speed n and shear rate γ ̇

10.2.2.3.3c) Deflection angle φ and shear deformation γ

10.2.2.4Flow instabilities and secondary flow effects in. cylinder measuring systems

10.2.2.4.1a) Taylor vortices and the Ta number in the annular gap of a Searle cylinder MS [10.10]

10.2.2.4.2Example: Measurement of water using an ISO cylinder MS (at T = +20 °C)

10.2.2.4.3Calculation

10.2.2.4.4b) Reynolds number in the circular gap of a cylinder MS [10.16]

10.2.2.4.5Example: Measurement of water using an ISO cylinder MS (at T = +20 °C)

10.2.2.4.6Calculation

10.2.2.4.7Note: Critical values of the angular velocity

10.2.2.5Advantages and disadvantages of cylinder measuring systems. 10.2.2.5.1 a) Advantages

10.2.2.5.2b) Disadvantages

10.2.3Double-gap measuring systems (DG MS)

10.2.4High-shear cylinder measuring systems (HS MS)

10.1.2.1.1Example: High-shear cylinder measuring systems

10.1.2.1.2Note 1: Viscous heating at high shear rates

10.1.2.1.3Note 2: High-pressure capillary viscometers for testing at very high shear rates

10.3Cone-and-plate measuring systems (CP MS)

10.3.1Geometry

10.1.2.1.1Note 1: Optional specifications for angle units, degrees or rad

10.1.2.1.2Note 2: Transparent cone-and-plate systems

10.3.2Calculations. 10.1.2.1.1a) Shear stress in a CP gap

10.1.2.1.2Summary for practical users in order to select the optimal MS geometry

10.1.2.1.3b) Shear rate in a CP gap

10.1.2.1.4Example

10.1.2.1.5Summary for practical users in order to select the optimal MS geometry

10.1.2.1.6c) Viscosity in a CP gap

10.3.3Conversion between raw data. and rheological parameters. 10.1.2.1.1a) Torque M and shear stress τ

10.1.2.1.2b) Rotational speed n and shear rate γ ̇

10.1.2.1.3c) Deflection angle φ and the deformation γ

10.3.4Flow instabilities and secondary flow effects in. CP systems

10.3.5Cone truncation and gap setting

10.1.2.1.1Note: Exactly gap setting is essential and the required gap dimension has to be kept strictly on this value during the whole test

10.3.6Maximum particle size

10.3.7Filling of the cone-and-plate measuring system

10.3.8Advantages and disadvantages of cone-and-plate. measuring systems. 10.1.2.1.1a) Advantages

10.1.2.1.2 b) Disadvantages

10.1.2.1.3Note (to HSV): High-shear cone-and-plate viscometer, and “high-shear visosity”

10.4Parallel-plate measuring systems (PP MS)

10.4.1Geometry

10.1.2.1.1Note 1: Specifications of PP MS dimensions for testing polymer melts (ISO 6721-10)

10.1.2.1.2Note 2: Possible problems when selecting a too small plate distance

10.1.2.1.3Note 3: Transparent parallel-plate systems

10.4.2Calculations. 10.1.2.1.1a) Shear stress in a PP gap

10.1.2.1.2Summary for practical users in order to select the optimal MS geometry

10.1.2.1.3b) Shear rate in a PP gap

10.1.2.1.4Note: Comparing the measuring systems PP and CP in terms of the shear rates

10.1.2.1.5Summary for practical users in order to select the optimal MS geometry

10.1.2.1.6c) Viscosity in a PP gap

10.4.3Conversion between raw data and. rheological parameters. 10.1.2.1.1a) Torque M and mean shear stress τm

10.1.2.1.2b) Rotational speed n and mean shear rate γ ̇ m

10.1.2.1.3c) Deflection angle φ and mean shear deformation γm

10.4.4Flow instabilities and secondary flow effects. in a PP system

10.4.5Recommendations for gap setting. 10.1.2.1.1Note 1: Testing resins, polymer melts, and silicones (uncrosslinked PDMS)

10.1.2.1.2Note 2: Maximum particle size , and required gap setting

10.1.2.1.3Note 3: Special analysis is required when gap setting is less than 0.3 mm

10.4.6Automatic gap setting and automatic gap control. using the normal force control option. 10.1.2.1.1a) Target: Gap setting and gap control

10.1.2.1.2b) Target: Forced contact of sample and plates at a constant compression force, compression tests and shear test at a constant compression force or normal force

10.1.2.1.3c) Target: Compression-less but guaranteed contact between the sample and the plates

10.4.7Determination of the temperature gradient. in the sample

10.4.8Advantages and disadvantages of. parallel-plate measuring systems. 10.1.2.1.1a) Advantages

10.1.2.1.2b) Disadvantages

10.5Mooney/Ewart measuring systems (ME MS)

10.6Relative measuring systems

10.6.1Measuring systems with sandblasted, profiled. or serrated surfaces

10.6.2Spindles in the form of disks, pins, and spheres

10.1.2.1.1Summary: Using spindles, viscosity values are not absolute values but relative values

10.1.2.1.2Note 1: Low-shear viscosity LSV (ASTM D7394)

10.1.2.1.3Note 2: Disk-like and spherical rotors according to ISO 2884-2

10.1.2.1.4Note 3: Testing the solidification of liquid films using a T-bar spindle and a trough

10.6.3Krebs spindles

10.1.2.1.1Note: Medium-shear viscosity MSV (ASTM D7394)

10.6.4Paste spindles and rotors showing pins and vanes

10.6.5 Ball measuring. systems (motion along a circular path)

10.1.2.1.1Examples 1: Measuring samples for ball MS

10.1.2.1.2Examples 2: Food samples for ball MS

10.6.6Further relative measuring systems

10.7Measuring systems for solid torsion bars

10.2.1.1.1a) Automatic setting and control of the clamp distance

10.2.1.1.2Examples. 10.2.1.1.31) Target: Guaranteed stretching of the specimen bar by a constant tensile force

10.2.1.1.42) Target: Stress-less compensation of changes in the length of a specimen bar

10.2.1.1.53) Adjustment of the clamp distance

10.2.1.1.6b) Determination of the temperature gradient in a specimen

10.7.1Bars showing a rectangular cross section

10.1.2.1.1Note: Preparation of the specimens for temperature test

10.1.2.1.2a) Conversion between raw data and rheo- logical parameters for rectangular bars

10.1.2.1.31) Torque M and shear stress τ

10.1.2.1.42) Deflection angle φ and deformation γ

10.1.2.1.5b) Calculation of the complex shear modulus |G*|

10.7.2Bars showing a circular cross section

10.1.2.1.11) Torque M and shear stress τ

10.1.2.1.22) Deflection angle φ and deformation γ

10.1.2.1.3b) Calculation of the complex shear modulus |G*|

10.7.3Composite materials

10.1.2.1.1 Examples:

10.1.2.1.2Note: Testing fibers and rovings without the polymer matrix

10.8Special measuring devices

10.8.1Special measuring conditions which influence rheology

10.8.1.1Magnetic fields for magneto-rheological fluids

10.8.1.1.1Measuring examples

10.8.1.2Electrical fields for electro-rheological fluids

10.8.1.3Immobilization of suspensions by extraction of fluid

10.8.1.3.1Measuring examples

10.8.1.4UV light for UV-curing materials

10.8.1.4.1Measuring example

10.8.1.4.2Tips for users

10.8.1.5Relative humidity makes sticky or brittle

10.8.1.5.1 Preset of RH

10.8.1.5.2Application examples:

10.8.2Rheo-optical measuring devices

10.8.2.1Terms from optics

10.8.2.1.1a) Light, visible and invisible

10.8.2.1.2b) Radiation and wavelengths, light quanta or photons

10.8.2.1.3c) Lasers and monochromatic light showing only a single wavelength

10.8.2.1.4d) Polarization as a linear orientation of the oscillating waves along a single. propagation plane, and polarimeters

10.8.2.1.5e) Transmission, and a few coincidental interactions of light beam and sample

10.8.2.1.6f) Refraction of light and change of its direction, refractive index and refractometers

10.8.2.1.7g) Birefringence in optically anisotropic materials and propagation delay

10.8.2.1.8h) Absorption and conversion of energy

10.8.2.1.9i) Dichroism, optically anisotropic and bi-colored, using a selective absorber

10.8.2.1.10k) Scattering on small particles, coherent bouncing, and incoherent secondary beams

10.8.2.1.11l) Diffraction on large particles, and lighting the shaded area

10.8.2.1.12m) Luminesence, fluorescence and color change, phosphorescence and after-glow

10.8.2.2Microscopy

10.8.2.2.1Note 1: STED microscopy, higher resolution due to encircled light points

10.8.2.2.2Note 2: Confocal 3D microscopy, dot by dot in focus

10.8.2.3Velocity profile of flow fields

10.8.2.4Devices for measuring anisotropy in terms of. optical rotation and birefringence

10.8.2.5SALS for diffracted light quanta

10.8.2.6SAXS for diffracted X-rays

10.8.2.7SANS for scattered neutrons

10.8.3Other special measuring devices. 10.8.3.1Interfacial rheology on two-dimensional liquid films

10.8.3.2Dielectric analysis, and DE conductivity of materials showing electric dipoles

10.8.3.2.1DEA measurement

10.8.3.2.2Examples of simultaneous combination of DEA and rheology tests:

10.8.3.3NMR, and resonance of magnetically active atomic nuclei

10.8.4Other kinds of testings besides shear tests

10.8.4.1Tensile tests, extensional viscosity, and extensional rheology. 10.8.4.1.1a) Extensional viscosity of ideal-viscous fluids, and Trouton relation

10.8.4.1.2b) Extensional viscosity of viscoelastic liquids

10.8.4.1.3Note 1: Tensile stress relaxation tests, and tensile creep and creep recovery tests

10.8.4.1.4Note 2: Stretch tests, and the critical point of extension

10.8.4.1.5Note 3: Tensile tests on solid films and laminates at a constant strain rate

10.8.4.1.6c) Extensional rheology, and oscillatory tensile tests

10.8.4.2Tack test, stickiness and tackiness

10.8.4.2.1Typical measurements consist of three intervals:

10.8.4.2.2Variants:

10.8.4.2.3Note: The Dahlquist criterion for adhesives in order to show sufficient tack

10.8.4.3Tribology

10.8.4.3.1Two examples of different measuring geometries [10.70][10.71]:

10.8.4.3.2a) Static friction (friction-at-rest)

10.8.4.3.3b) Kinetic friction

10.8.4.3.4c) Static friction, rolling. friction and roll-out time of a ball bearing

10.8.4.3.5d) Application examples for investigating frictional behavior

10.9References

11Instruments. 11.1Introduction

11.2Short overview: methods for testing. viscosity and elasticity

11.2.1Very simple determinations

11.2.2Flow on a horizontal plane

11.2.3Spreading or slump on a horizontal plane after. lifting a container

11.2.4Flow on an inclined plane

11.2.5Flow on a vertical plane or over a special tool

11.2.6Flow in a channel, trough or bowl

11.2.7Flow cups and other pressureless. capillary viscometers

11.2.8Devices showing rising, sinking, falling and. rolling elements

11.2.9Penetrometers, consistometers and texture analyzers

11.2.10Pressurized cylinder and capillary devices

11.2.11Simple rotational viscometer tests

11.2.12Devices with vibrating or oscillating elements

11.2.13Rotational and oscillatory curemeters (for rubber testing)

11.2.14Tension testers

11.2.15Compression testers

11.2.16Linear shear testers

11.2.17Bending or flexure testers

11.2.18Torsion testers

11.3Flow cups

11.3.1ISO cups

11.3.1.1Capillary length

11.3.1.2Calculations. 11.3.1.2.1a) Hydrostatic pressure in a capillary

11.3.1.2.2b) The shear stress at the capillary wall according to the Hagen/Poiseuille relation

11.3.1.2.3c) Shear rates in a capillary

11.3.1.3Flow instabilities, secondary flow effects, turbulent flow conditions in flow cups

11.3.2Other types of flow cups

11.4Capillary viscometers. 11.4.1Glass capillary viscometers

11.4.1.1Calculations

11.4.1.1.1a) Hydrostatic pressure in a capillary

11.4.1.1.2b) The shear stress at the capillary wall according to the Hagen/Poiseuille relation

11.4.1.1.3c) Shear rates in a capillary

11.4.1.2Determination of the molar mass of polymers using. diluted polymer solutions

11.4.1.2.1a) The relative viscosity or the viscosity ratio

11.4.1.2.2b) The logarithmic viscosity number or the inherent viscosity

11.4.1.2.3c) The specific viscosity or the viscosity relative increment

11.4.1.2.4d) The reduced viscosity or the viscosity number VN (or the Staudinger function)

11.4.1.2.5e) The intrinsic viscosity IV or the limiting viscosity number LVN (or the Staudinger index)

11.4.1.2.6Steps to determine the value of the intrinsic viscosity [η]

11.4.1.2.7Application example: Research on proteins structures

11.4.1.2.8f) The [η]-M relation

11.4.1.2.9 g) Notes

11.4.1.3Determination of the viscosity index VI of petrochemicals

11.4.1.3.1Analysis method A

11.4.1.3.2Analysis method B

11.4.2Pressurized capillary viscometers. 11.4.2.1MFR and MVR testers driven by a weight (low-pressure capillary viscometers)

11.4.2.1.1a) Test procedure

11.4.2.1.2b) Determinations

11.4.2.1.3Conversion between MFR and MVR values

11.4.2.1.4Flow curve determination using MFR and MVR testers

11.4.2.1.5 c) Calculations

11.4.2.1.61) Pressure values in the cylinder and in the die

11.4.2.1.72) Shear stress values at the wall of the die according to the Hagen/Poiseuille relation

11.4.2.1.83) The mean shear rate value at the wall of the die acc. to the Hagen/Poiseuille relation

11.4.2.1.94) Calculation of viscosity values

11.4.2.2High-pressure capillary viscometers driven by an electric drive, for testing highly viscous and paste-like materials

11.4.2.2.1a) Test methods

11.4.2.2.2b) Determinations

11.4.2.3High-pressure capillary viscometers driven by gas pressure, for testing liquids

11.4.2.3.1a) Test methods

11.4.2.3.2b) Determinations

11.4.2.3.3c) Calculations

11.5Falling-ball viscometers

11.2.1.1.1The measuring principle of falling ball viscometers, and calculations

11.6Stabinger viscometer

11.2.1.1.1Explanations of the measuring procedure, and calculations

11.7Rotational and oscillatory rheometers

11.7.1Rheometer set-ups

11.1.2.1.1a) Rheometer type 1: Single head rheometers, or combined motor transducer (CMT) system

11.1.2.1.2b) Rheometer type 2: Dual head rheometers, or separated motor transducer (SMT) system

11.1.2.1.3c) Rheometer type 3: Double rheometer system with two separated measuring heads, both with drive and detector [11.141]

11.7.2Control loops. 11.1.2.1.1a) Torque control

11.1.2.1.2b) Control of deflection angle and rotational speed, using a closed control loop

11.1.2.1.3Note: Direct strain oscillation (DSO)

11.7.3Devices to measure torques

11.1.2.1.1a) Torque measurements using mechanical force sensors

11.1.2.1.2b) Torque measurements via power consumption of an electromotor

11.7.4Devices to measure deflection angles and. rotational speeds

11.1.2.1.1a) Measurements of rotational speeds using tachogenerators

11.1.2.1.2b) Measurements of deflection angles and rotational speeds using incremental encoders

11.7.5Bearings

11.1.2.1.1a) Mechanical bearing (e. g. ball bearing)

11.1.2.1.2b) Air bearing

11.7.6Temperature control systems

11.1.2.1.1a) Liquid bath

11.1.2.1.2b) Electric heating

11.1.2.1.3c) Convection oven for heating and cooling with gas

11.1.2.1.4d) Induction heating

11.1.2.1.5e) Peltier elements

11.8References

12Guideline for rheological tests

12.1Selection of the measuring system (geometry)

12.2Rotational tests. 12.2.1Flow and viscosity curves

12.1.2.1.1Measuring results and analysis

12.1.2.1.2a) If no yield point exists (flow curve types 1 to 4)

12.1.2.1.3b) If a yield point exists (flow curve type 5)

12.1.2.1.4Measuring results, and determination of the yield point by rotational tests:

12.2.2Time-dependent flow behavior (rotation)

12.2.3Step tests (rotation): structural decomposition and regeneration (thixotropy)

12.2.4Temperature-dependent flow behavior (rotation)

12.1.2.1.1Measuring results and analysis:

12.3Oscillatory tests

12.3.1Amplitude sweeps

12.1.2.1.1Measuring results and analysis:

12.3.2Frequency sweeps

12.1.2.1.1a) Polymers: Measuring results and analysis, using the curves of G’ and G’’

12.1.2.1.2b) Polymers: Measuring results and analysis, using the curves of η*

12.1.2.1.3c) Further analysis with polymers

12.1.2.1.4d) Dispersions and gels: Measuring results and analysis

12.3.3Time-dependent viscoelastic behavior (oscillation)

12.3.4Step tests (oscillation): structural decomposition and regeneration (thixotropy) 12.1.2.1.1Preset, alternatives: 12.1.2.1.2a) Three test intervals: oscillation/rotation/oscillation (ORO; as in Figure 8.33)

12.1.2.1.3b) Three intervals: all in oscillation (as in Figure 8.30)

12.3.5Temperature-dependent viscoelastic behavior (oscillation)

12.1.2.1.1a) Polymers: Measuring results and analysis

12.1.2.1.2b) Crystallizing samples: Measuring results and analysis

12.1.2.1.3c) Gelation, hardening, curing: Measuring results and analysis

12.4Selection of the test type

12.4.1Behavior at rest

12.1.2.1.1a) Determination of the yield stress value τy (or yield point) and the flow stress value τf (or flow point)

12.1.2.1.21) Rotational tests

12.1.2.1.32) Oscillatory tests

12.1.2.1.4b) If there is no flow point: the plateau value of the zero-shear viscosity η0

12.1.2.1.5c) Structural strength in terms of the G’-value

12.1.2.1.6d) Long-term stability of dispersions and gels

12.1.2.1.7e) Material characterization: behavior at rest

12.4.2Flow behavior

12.4.3Structural decomposition and regeneration (thixotropic behavior, e. g. of coatings) 12.1.2.1.1Step test, consisting of three intervals at low/high/low shear conditions

12.5References

13Shear tests with powders. and bulk solids. 13.1Introduction

13.1.1Classification of bulk solids according to their. fluidizability

13.1.2Influences on the flow behavior of powder

13.2Shear test of highly compacted, consolidated bulk solids

13.2.1.1.1Note: Measuring variants of rheometers when operating with ring shear cells

13.2.1Pre-compaction of the bulk solid

13.2.2Pre-shear of the bulk solid

13.2.3Shear-to-failure of the bulk solid

13.2.4Further pre-shear and shear-to-failure cycles

13.2.5The Mohr´s circles

13.2.5.1Mohr´s circle for steady-state flow, and the determination of the consolidation stress

13.2.5.1.1Relevance of the consolidation stress σ1 for common practice

13.2.5.2Mohr´s circle for the determination of the. compressive strength

13.2.5.2.1Relevance of the compressive strength σc for common practice

13.2.5.3Flow function, from consolidation and compressive strength

13.2.6Further tests with shear cells

13.2.6.1Time consolidation, determined from the time flow locus

13.2.6.2Wall friction, determined from the wall yield locus

13.2.6.3Wall friction with time consolidation, determined from the time wall yield locus

13.3Shear test of slightly compacted. bulk solids, using the powder cell

13.3.1Powder cells

13.3.2Preparations for powder testing

13.1.2.1.1Preparation (PT-T1) of the bulk solid by weighing the powder

13.3.3Preliminary tests for fluidization behavior of powders

13.1.2.1.1Fluidization process

13.1.2.1.2Examples for fluidization:

13.1.2.1.3Example: Loosening of a powder, and pneumatic transport

13.1.2.1.4Optional analysis for the preliminary test PT-T2 (fluidization behavior): 13.1.2.1.5OA1) Comparison between fluidization and de-fluidization behavior of the powder

13.1.2.1.6OA2) De-aeration behavior of the fluidized bed

13.3.4Powder testing and the determination of the. cohesion strength

13.1.2.1.1PT-T3a) Fluidization of the powder

13.1.2.1.2PT-T3b) De-aeration of the powder

13.1.2.1.3PT-T3c) Testing the de-aerated powder

13.1.2.1.4Evaluation, with calculation of the cohesion strength S

13.1.2.1.5Examples for the cohesion strength S:

13.1.2.1.6Optional methods and evaluations: Flow curves of powders

13.4References

14Rheologists and the historical development of rheology

14.1Development until the 19th century

14.2Development between 1800 and 1900

14.3Development between 1900 and 1949

14.4Development between 1950 and 1979

14.5Development since 1980

14.6References

16Appendix. 15.1Symbols, signs and abbreviations used. 15.2.1.1.1a) Latin characters (small letters)

15.2.1.1.2b) Latin characters (capitals)

15.2.1.1.3c) Greek characters

15.2The Greek alphabet

15.3Conversion table for units

15.2.1.1.1a) Length L (ISO unit: m)

15.2.1.1.2b) Area A (ISO unit: m2)

15.2.1.1.3c) Volume V (ISO unit: m3)

15.2.1.1.4d) Volume flow rate V ˙ (ISO unit: m3/s)

15.2.1.1.5e) Mass m (ISO unit: kg)

15.2.1.1.6f) Density ρ (ISO unit: kg/m3)

15.2.1.1.7g) Force F (ISO unit: N)

15.2.1.1.8h) Torque M (ISO unit: Nm)

15.2.1.1.9i) Mechanical stress τ, and pressure p (ISO unit: Pa or N/m2)

15.2.1.1.10k) Angle φ (recommended: rad)

15.2.1.1.11l) Time t (ISO unit: s)

15.2.1.1.12m) Velocity v (ISO unit: m/s)

15.2.1.1.13n) Rotational speed n or angular velocity ω (ISO unit: rad/s or s-1)

15.2.1.1.14o) Frequency f or angular frequency ω (ISO unit: rad/s or s-1)

15.2.1.1.15p) Temperature T (ISO unit: K, but °C is more useful for the daily work)

15.2.1.1.16q) Energy E, and work W (ISO unit: J)

15.2.1.1.17r) Power P (ISO unit: W)

15.2.1.1.18s) Viscosity

15.4References

16Standards. 16.1ISO standards

16.2ASTM standards

16.3DIN, DIN EN, DIN EN ISO and. EN standards

16.4Important standards for users of. rotational rheometers

16.2.1.1.1a) Geometries of measuring systems

16.2.1.1.2b) Polymer testing

16.2.1.1.3c) Testing of other kinds of measuring samples

16.2.1.1.4d) Terms used in rheology and rheometry

16.5References

Author

Acknowledgements

Index

Отрывок из книги

Thomas G. Mezger

The Rheology Handbook

.....

gellant), 2) polymer molecules in solution, 3a) dispersed polymer particles, without an additive,

3b) polymer dispersion with a polymeric associative thickener, here, also surfactant molecules are integrated in the bridge-like clusters

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Rheology Handbook
Подняться наверх