Описание книги
Учебное пособие содержит подробное изложение основных вопросов курсов «Обыкновенные дифференциальные уравнения», «Операционное исчисление», «Ряды» и «Вариационное исчисление», соответствующее требованиям к минимуму основной обязательной программы по подготовке дипломированных специалистов.
Рассматриваются методы решения дифференциальных уравнений (ДУ) первого и второго порядков и, в частности, ДУ Эйлера. Теория проиллюстрирована вспомогательными рисунками и решением типовых примеров. Даны классические методы решения ДУ первого и второго порядков. Рассмотрены решения ДУ, заданных неявным образом. В пособии рассматриваются также способы получения особых решений ДУ в виде Р — дискриминантных и С — дискриминантных кривых. Большое внимание уделяется особым решениям ДУ, которые интерпретируются как кривые, огибающие семейство кривых обыкновенных решений.
Рассмотрены вопросы устойчивости решений ДУ по Ляпунову. Даны также приближенные методы решения ДУ с начальными и краевыми условиями, в том числе в прикладной программе MathCAD. Две лекции посвящены изложению операционного метода решения линейных ДУ и линейных систем ДУ с постоянными коэффициентами при начальных условиях, что находит широкое применение в экономических задачах и задачах механики, радиотехники и электротехники.
Четыре лекции посвящены изложению теории рядов. Достаточно подробно дана теория числовых и функциональных рядов. Рассмотрены приложения теории функциональных рядов к приближенному решению ДУ. Даны элементы вариационного исчисления для получения экстремалей некоторых функционалов методом решения ДУ Эйлера.
Кроме того, данное пособие снабжено большим набором индивидуальных заданий для самостоятельной работы студентов в виде практических занятий и домашних контрольных, что должно повысить интенсивность занятий и способствовать успешному усвоению студентами данного материала.
Учебное пособие предназначено для студентов вузов всех форм обучения по направлениям подготовки, входящим в УГС: «Экономика и упра