Теория понятий. Технология семантического мышления
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Vict. Теория понятий. Технология семантического мышления
Аннотация
1. Введение
2. Философия мышления
3. Теория семантических множеств
4. Семантика
5. Последний парадокс теории множеств
6. Усиление парадокса Рассела
7. Информатика
8. Диалектическое определение сематических определений
9. Алгебра понятий
10. Семантические отображения
11. Элементарная бытовая семантическая математика
12.Семантические интегралы
13. Заключение
14. Литература
Отрывок из книги
Уважаемый читатель или даже читательница, если у Вас нет проблем с мышлением, то читать этот текст дальше не рекомендуется, ибо по прочтении они могут появиться.
Для теории понятий интерес представляет технология мышления, поскольку, как представляется, вся математика и многие другие (если не все) дисциплины и науки основаны на мышлении. Все проблемы естественного интеллекта от возникновения и до разрешения включительно определяются мышлением. Мышление необходимо даже и в быту, буквально на каждом шагу. Теория понятий исходит из концепции, что мышление и все науки нужны для понимания и совершенствования реального мира. Теория понятий занимается технологией мышления. Для использования теории понятий никакие дополнительные знания не требуются, достаточно мышления. Теория семантических понятий рассматривает мышление в качестве предмета исследования, изучения и применения. Проблематика технологии мышления стала особенно актуальной в самое последнее время в связи с работами по искусственному интеллекту. Если ещё недавно естественный интеллект интересовался, могут ли машины мыслить, то теперь на повестку дня у симбиоза естественного и искусственного интеллекта выходит вопрос – а достаточно ли адекватно мыслит естественный интеллект.
.....
Для теории понятий наибольший интерес в определении понятия множества представляют не количественные характеристики совокупностей или даже множеств элементов, сколько отношения элементов и алгоритмы построения элементов, представляющих эти множества элементов. К слову, поскольку определение множества предполагает нахождение некой сущности, представляющей совокупность, или даже множество элементов в полном смысле, то совершенно неважно, какие именно элементы образуют определяющую совокупность. Ибо определяемая сущность должна и будет представлять совокупность в полной мере.
Классическая математика предполагает единую, неизменную аксиоматику. Прикладная математика, представленная Кантором [3], допускает использование каждым математиком собственной, диалектически совершенствующейся аксиоматики. Система ALEPH, представляющая теорию понятий (и/или) прикладную математику, использует термины естественного языка для представления семантики объектов созерцания и объектов мышления.
.....