Handbook of Plastics Testing and Failure Analysis

Handbook of Plastics Testing and Failure Analysis
Автор книги: id книги: 1878832     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14097,4 руб.     (132,76$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781118943632 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Written in easy-to-read and -use format, this book provides a strong training resource and reference for product designers using plastics in their products – helping them identify, quantify, and confirm whether problems are related to product design or process.<br /><br />• Updates coverage of data analysis techniques and examples and expands coverage of failure analysis, key because of increased litigation related to product liability<br />• Overviews plastic testing methods and the framework to investigate causes of plastic part failure<br />• Provides a strong training resource and reference for product designers using plastics in their products<br />• Features a video tour of a plastics testing labroatory on a companion website and has a separate manual of problems and solutions that are appropriate for college professors using the book as a class textbook

Оглавление

Vishu Shah. Handbook of Plastics Testing and Failure Analysis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

HANDBOOK OF PLASTICS TESTING AND FAILURE ANALYSIS

PREFACE TO THE FOURTH EDITION

PREFACE TO THE THIRD EDITION

PREFACE TO THE SECOND EDITION

PREFACE TO THE FIRST EDITION

BIOGRAPHY OF VISHU SHAH

ABOUT THE COMPANION WEBSITE

1 BASIC CONCEPTS AND ADVANCEMENT IN TESTING TECHNOLOGY. 1.1. BASIC CONCEPTS

1.2. SPECIFICATION AND STANDARDS

1.3. PURPOSE OF SPECIFICATIONS

1.4. BASIC SPECIFICATION FORMAT

1.4.1. Classification System

1.4.2. Requirements

1.4.3. Sampling and Conditioning

1.4.4. Test Methods

1.5. ADVANCEMENTS IN TESTING TECHNOLOGY

1.6. NEW DEVELOPMENTS AND TRENDS IN TESTING TECHNOLOGY

REFERENCES

2 MECHANICAL PROPERTIES. 2.1. INTRODUCTION

2.2. TENSILE TESTS (ASTM D 638, ISO 527‐1)

2.2.1. Apparatus

2.2.2. Test Specimens and Conditioning

2.2.3. Test Procedures. A. Tensile Strength

B. Tensile Modulus and Elongation

2.2.4. Factors Affecting the Test Results. A. Specimen Preparation and Specimen Size

B. Rate of Straining

C. Temperature

2.3. FLEXURAL PROPERTIES (ASTM D 790, ISO 178)

2.3.1. Apparatus

2.3.2. Test Specimens and Conditioning

2.3.3. Test Procedures and Calculations

2.3.4. Modulus of Elasticity (Flexural Modulus)

2.3.5. Factors Affecting the Test Results. A. Specimen Preparation

B. Temperature

C. Test Conditions

2.4. COMPRESSIVE PROPERTIES (ASTM D 695, ISO 604)

2.4.1. Apparatus

2.4.2. Test Specimens and Conditioning

2.4.3. Procedure

2.5. CREEP PROPERTIES (ISO 899‐1, ISO 899‐2, ASTM D2990, ISO 16770)

2.5.1. Tensile Creep

2.5.2. Flexural Creep

2.5.3. Interpretation and Applications of Creep Data

2.5.4. Isochronous Stress–Strain Curves

2.5.5. Effects of Stress and Temperature on Creep Modulus

2.5.6. Basic Procedures for Developing and Applying Creep Modulus Data

2.6. STRESS RELAXATION

2.7. IMPACT PROPERTIES. 2.7.1. Introduction

2.7.2. Factors Affecting the Impact Strength. A. Rate of Loading

B. Notch Sensitivity

C. Temperature

D. Orientation

E. Processing Conditions and Types

F. Degree of Crystallinity, Molecular Weight

G. Method of Loading

H. Specimen Clamping

2.7.3. Types of Impact Tests

A. Pendulum Impact Tests. Izod–Charpy Impact Test (ASTM D‐256, ASTM D4812 ISO 179)

Apparatus and Test Specimens

Test Procedures

Effect of Test Variables and Limitations

B. High‐Rate Tension Test

C. Falling‐Weight Impact Test

Drop Impact Test

Test Variables and Limitations

D. Instrumented Impact Testing

Interpreting Impact Data

E. High‐Speed Impact Tests (ASTM D3763, ISO 6603‐2)

F. Miscellaneous Impact Tests

2.8. SHEAR STRENGTH (ASTM D 732)

2.8.1. Test Specimen and Apparatus

2.8.2. Test Procedures

2.8.3. Significance and Limitations

2.9. ABRASION. 2.9.1. Introduction

2.9.2. Abrasion Resistance Tests

2.10. FATIGUE RESISTANCE. 2.10.1. Introduction

2.10.2. Flexural Fatigue Test

2.10.3. Tensile Fatigue Test

2.10.4. Factors Affecting the Test Results and Limitation of Fatigue Tests

2.11. HARDNESS TESTS. 2.11.1. Introduction

2.11.2. Rockwell Hardness (ASTM D 785)

A. Test Apparatus and Specimen

B. Test Procedures

2.11.3. Durometer Hardness (ASTM D 2240, ISO 868)

2.11.4. Barcol Hardness (ASTM D 2583)

A. Anisotropy

REFERENCES

SUGGESTED READING

3 THERMAL PROPERTIES. 3.1. INTRODUCTION

3.2. TESTS FOR ELEVATED TEMPERATURE PERFORMANCE

3.2.1. Short‐Term Effects. A .Heat Deflection Temperature (HDT) (ASTM D 648, ISO 75‐1 & 75‐2)

Apparatus and Test Specimens

Oil‐Free Apparatus

Test Procedure

Test Variables and Limitations

B. Vicat Softening Temperature (ASTM D 1525, ISO 306)

C. Torsion Pendulum Test (ASTM D 2236)

3.2.2. Long‐Term Effects

A. Long‐Term Heat‐Resistance Test (ASTM D 794) (Withdrawn 1998)

B. UL Temperature Index

Relative Thermal Indices

Relative Thermal Index Based Upon Historical Records

Relative Thermal Index Based Upon Long‐Term Thermal Aging

C. Creep Modulus/Creep Rupture Tests

3.3. THERMAL CONDUCTIVITY (ASTM C 177, ISO 8302)

3.4. THERMAL EXPANSION

3.4.1. Coefficient of Linear Thermal Expansion (ASTM D 696)

3.5. BRITTLENESS TEMPERATURE (ASTM D 746, ISO 974)

3.5.1. Test Apparatus and Procedures

REFERENCES

SUGGESTED READING

4 ELECTRICAL PROPERTIES. 4.1. INTRODUCTION

4.2. DIELECTRIC STRENGTH (ASTM D 149, IEC 243‐1)

4.2.1. Factors Affecting the Test Results. A. Specimen Thickness

B. Temperature

C. Humidity

D. Electrodes

E. Time

F. Mechanical Stress

G. Processing

4.2.2. Test Limitations and Interpretations

4.3. DIELECTRIC CONSTANT AND DISSIPATION FACTOR (ASTM D 150, IEC 250) 4.3.1. Dielectric Constant (Permittivity)

4.3.2. Dissipation Factor

4.4. ELECTRICAL RESISTANCE TESTS

4.5. ARC RESISTANCE (ASTM D 495)

4.6. UL REQUIREMENTS

4.6.1. Material Properties

A. Short‐Term Properties—UL 746 A

B. Long‐Term Properties—UL 746 B

4.6.2. Evaluation of Plastic Materials Used in Electrical Equipments—UL 746 C

4.6.3. Polymeric Materials—Fabricated Parts UL 746 D

4.7. EMI/RFI SHIELDING (10) 4.7.1. Introduction

4.7.2. Regulations and Standards

4.7.3. Shielding Effectiveness Measurement

A. Open‐Field Testing Technique

B. Shielded‐Box Technique, Coaxial Transmission Line Technique, and Shielded‐Room Technique

4.7.4. Conductivity Measurement

A. Surface Resistivity

B. Volume Resistivity

C. Ohms‐per‐Square Testing

4.7.5. Adhesion Testing

REFERENCES

SUGGESTED READING

5 WEATHERING PROPERTIES. 5.1. INTRODUCTION

5.1.1. UV Radiation

5.1.2. Microorganisms

5.1.3. Oxygen, Moisture, Thermal Energy, and Other Environmental Factors

5.2. ACCELERATED WEATHERING TESTS

5.2.1. Fluorescent UV Exposure of Plastics (ASTM D4329, ISO 4892‐3)

5.2.2. Filtered Open‐Flame Carbon Arc‐Type Exposures of Plastics (ASTM D 1499) and Enclosed Carbon Arc Exposures of Plastics (ASTM D 6360)

5.2.3. Xenon Arc Exposure of Plastics Intended for Outdoor Applications (ASTM D 2565, G 155, ISO 4892‐2)

5.2.4. Metal halide light sources

5.2.5. Interpretations and Limitations of Accelerated Weathering Test Results

5.3. OUTDOOR WEATHERING OF PLASTICS (ASTM D 1435, ISO‐877)

5.3.1. Outdoor Accelerated Weathering (ASTM G 90)

5.4. RESISTANCE OF PLASTIC MATERIALS TO FUNGI (ASTM G 21)

5.5. RESISTANCE OF PLASTIC MATERIALS TO BACTERIA (ASTM G 22)

5.6. LIMITATIONS OF ACCELERATED MICROBIAL GROWTH RESISTANCE TESTING

5.7. OUTDOOR EXPOSURE TEST FOR STUDYING THE RESISTANCE OF PLASTIC MATERIALS TO FUNGI AND BACTERIA AND ITS LIMITATIONS

REFERENCES

SUGGESTED READING

6 OPTICAL PROPERTIES. 6.1. INTRODUCTION

6.2. REFRACTIVE INDEX (ASTM D 542, ISO 489)

6.2.1. Refractometric Method

6.2.2. Microscopical Method

6.3. LUMINOUS TRANSMITTANCE AND HAZE (ASTM D 1003)

6.3.1. Test Procedure

6.4. PHOTOELASTIC PROPERTIES

6.4.1. Stress‐Optical Sensitivity Examination

6.5. COLOR

6.5.1. Instrumented Color Measurement

6.5.2. Visual Color Evaluation (ASTM D 1729)

6.6. SPECULAR GLOSS (ASTM D2457, D523)

REFERENCES

SUGGESTED READING

7 MATERIAL CHARACTERIZATION TESTS. 7.1. INTRODUCTION

7.2. MELT INDEX TEST (ASTM D 1238, ISO 1133) 7.2.1. Significance

7.2.2. Test Procedures

7.2.3. Factors Affecting the Test Results

7.2.4. Interpretation of Test Results

7.2.5. Advancement in Melt Index Testing Technology

7.3. RHEOLOGY

7.3.1. Torque Rheometer

7.3.2. Rotational Rheometers/Viscometers

7.3.3. Capillary Rheometer

7.4. VISCOSITY TESTS

7.4.1. Dilute Solution Viscosity of Polymers (ASTM D 2857)

A. Relative Viscosity (Viscosity Ratio)

B. Specific Viscosity

C. Reduced Viscosity (Viscosity Number)

D. Inherent Viscosity (Logarithmic Viscosity Number)

E. Intrinsic Viscosity (Limiting Viscosity Number)

7.4.2. Applications and Limitations of Dilute Solution Viscosity Measurements

7.5. GEL PERMEATION CHROMATOGRAPHY

7.5.1. GPC Instrumentation

A. Solvent Delivery System

B. Injector

C. Columns

D. Detectors

E. Recorder

7.5.2. Test Procedure

7.5.3. Interpreting the GPC Curve

7.6. THERMAL ANALYSIS TECHNIQUES

7.6.1. Differential Scanning Calorimetry (ASTM D 3418, ISO 11357)

7.6.2. Thermogravimetric Analysis (TGA)

7.6.3. Thermomechanical Analysis (TMA)

7.6.4. Dynamic Mechanical Analysis (DMA)

7.7. SPECTROSCOPY

7.8. MATERIAL CHARACTERIZATION TESTS FOR THERMOSETS

7.8.1. Apparent (Bulk) Density, Bulk Factor, and Pourability of Plastic Materials (ASTM D 1895)

A. Determination of Apparent Density

B. Determining Bulk Factor

C. Pourability

7.8.2. Flow Tests

A. Factors Affecting Flow

B. Spiral Flow of Low‐Pressure Thermosetting Compounds (ASTM D 3123)

C. Cup Flow Test (ASTM D 731)

7.8.3. Viscosity Tests for Thermosets

A. Bubble Viscometer

7.8.4. Gel Time and Peak Exothermic Temperature of Thermosetting Resins (ASTM D 2471)

REFERENCES

GENERAL REFERENCES

SUGGESTED READING

8 FLAMMABILITY. 8.1. INTRODUCTION

8.2. FLAMMABILITY TEST (NONRIGID SOLID PLASTICS) (ASTM D 4804)

8.3. FLAMMABILITY TEST (SELF‐SUPPORTING PLASTICS IN HORIZONTAL POSITION) (D 635)

8.4. FLAMMABILITY TEST (SOLID PLASTICS IN VERTICAL POSITION) (D 3801)

8.5. IGNITION PROPERTIES OF PLASTICS. 8.5.1. Introduction

8.5.2. Ignition Temperature Determination (ASTM D 1929)

8.5.3. Ignition Response Test (ASTM D 3713)

8.6. OXYGEN INDEX TEST (ASTM D 2863, ISO 4589) 8.6.1. Introduction

8.6.2. Test Procedures

8.6.3. Factors Affecting the Test Results

8.7. SURFACE BURNING CHARACTERISTICS OF MATERIALS

8.7.1. Surface Flammability of Materials Using a Radiant Heat Energy Source (ASTM E 162)

8.7.2. Surface‐Burning Characteristics of Building Materials (ASTM E 84)

8.8. FLAMMABILITY OF CELLULAR PLASTICS—VERTICAL POSITION (ASTM D 3014)

8.9. FLAMMABILITY OF CELLULAR PLASTICS—HORIZONTAL POSITION (ASTM D 1692)

8.10. FLAME RESISTANCE OF DIFFICULT‐TO‐IGNITE PLASTICS (FEDERAL STD. NO 406 METHOD 203)

8.11. SMOKE GENERATION TESTS

8.11.1. Smoke Density Test (ASTM D 2843)

8.11.2. Surface Flammability Tests (ASTM E 84)

8.11.3. Specific Optical Density of Smoke Generation (ASTM E 662)

8.11.4. Gravimetric Determination of Smoke Particulates from Burning of Plastic (ASTM D 4100)

8.11.5. Radiant Panel Test (ASTM E 162)

8.11.6. OSU Release Rate Test

8.12. UL 94 FLAMMABILITY TESTING

8.12.1. Horizontal Burning Test for Classifying Materials (HB)

8.12.2. Vertical Burning Test for Classifying Materials (V‐0, V‐1, V‐2)

8.12.3. Vertical Burning Test for Classifying Materials (5V)

8.12.4. Vertical Burning Test for Classifying Materials (VTM‐0, VTM‐1, or VTM‐2)

8.12.5. Horizontal Burning Test for Classifying Foam Materials (HBF‐1 or ‐2)

8.12.6. Factors Affecting UL 94 Flammability Testing

8.13. MEETING FLAMMABILITY REQUIREMENTS

8.13.1. Agencies Regulating Flammability Standards. A. Government Agencies

B. Industry Associations

C. Private Institutions

D. Insurance Underwriters

E. Other Agencies

8.13.2. Steps in Meeting Flammability Requirements

REFERENCES

SUGGESTED READING

9 CHEMICAL PROPERTIES. 9.1. INTRODUCTION

9.2. IMMERSION TEST (ASTM D 543, ISO 22088)

9.3. STAIN RESISTANCE OF PLASTICS

9.3.1. Resistance of Plastics to Sulfide Staining (ASTM D 1712)

9.4. SOLVENT STRESS‐CRACKING RESISTANCE

9.5. ENVIRONMENTAL STRESS‐CRACKING RESISTANCE (ASTM D 1693, ISO 22088)

9.5.1. Test Procedure

9.5.2. Alternate Constant Strain Test

REFERENCES

10 ANALYTICAL TESTS. 10.1. INTRODUCTION

10.2. DENSITY AND SPECIFIC GRAVITY (ASTM D 792, ISO 1183)

10.2.1. Method A

10.2.2. Method B

10.3. DENSITY‐BY‐DENSITY GRADIENT TECHNIQUE (ASTM D 1505, ISO R 1183‐2)

10.4. BULK (APPARENT) DENSITY TEST (ASTM D 1895)

10.5. WATER ABSORPTION (ASTM D 570, ISO 62)

10.6. MOISTURE ANALYSIS

10.6.1. Loss on Drying (LOD) Method

A. LOD Using a Laboratory Oven

B. LOD Using an Instrument (ASTM D 6980)

10.6.2. Karl Fischer Method

10.6.3. Sensor‐Based Technology (ASTM D 7191)

10.6.4. Microwave Technology

10.7. SIEVE ANALYSIS (PARTICLE SIZE) TEST (ASTM D 1921)

REFERENCES

11 CONDITIONING PROCEDURES. 11.1. CONDITIONING (ASTM D 618, ISO 291)

11.2. DESIGNATION FOR CONDITIONING

Example

REFERENCES

SUGGESTED READING

12 MISCELLANEOUS TESTS

12.1. TORQUE RHEOMETER TEST (ASTM D 2538)

12.2. PLASTICIZER ABSORPTION TESTS

12.2.1. Plasticizer Absorption—Burette Method

12.2.2. Plasticizer Absorption Using a Torque Rheometer (ASTM D 2396)

12.2.3. Plasticizer Absorption Under Applied Centrifuge Force (ASTM D 3367 ISO 4608)

12.3. CUP VISCOSITY TEST

12.4. BURST STRENGTH TEST

12.4.1. Quick‐Burst Strength Test (ASTM D 1599)

12.4.2. Long‐Term‐Burst Strength Test (ASTM D 1598)

12.4.3. Developing Long‐Term Hydrostatic Design Stress Data and Pressure Rating

12.5. CRUSH TEST

12.6. ACETONE IMMERSION TEST (ASTM D 2152)

12.7. ACETIC ACID IMMERSION TEST (ASTM D 1939)

12.8. END‐PRODUCT TESTING

12.9. ASH CONTENT (ASTM D 5630, ASTM D 2584, ISO 3451)

REFERENCES

GENERAL REFERENCES

13 IDENTIFICATION ANALYSIS OF PLASTIC MATERIALS. 13.1 INTRODUCTION

13.1.1. Melting‐Point Determination

13.1.2. Solubility Test

13.1.3. Copper Wire Test

13.1.4. Specific Gravity Test

13.2. ADVANCED METHODS FOR IDENTIFICATION

13.2.1. Fourier Transform Infrared Analysis

13.2.2. Thermogravimetric Analysis

13.2.3. Differential Scanning Calorimetry (DSC)

13.2.4. Thermomechanical Analysis (TMA)

13.2.5. Nuclear Magnetic Resonance (NMR)

13.2.6. Chromatography (GCMS/LCMS/PYMS/GPC)

A. Gas Chromatography‐Mass Spectrometry (GC‐MS)

B. Liquid Chromatography‐Mass Spectrometry (LC‐MS)

C. Pyrolysis‐Mass Spectrometry (PY‐MS)

D. Gel Permeation Chromatography (GPC)

13.2.7. Mass Spectrometry (MS)

13.2.8. X‐Ray Fluorescence

13.2.9. Microscopy (SEM/TEM)

13.3. IDENTIFICATION OF PLASTIC MATERIALS. 13.3.1. Thermoplastics. A. ABS

B. Acetal

C. Acrylic

D. Cellulose Acetate

E. Cellulose Acetate Butyrate

F. Cellulose Propionate

G. Fluorocarbons (FEP, CTFE, PTFE, PVF)

H. Nylons

I. Polycarbonate

J. Thermoplastic Polyester

K. PVC

L. Polyethylene

M. Polypropylene

N. Polystyrene

O. Polyphenylene Oxide (PPO)

P. Polysulfone

Q. Polyurethane (Thermoplastic)

R. Polyphenylene Sulfide (PPS)

13.3.2. Thermosetting Plastics. A. Diallyl Phthalate (DAP)

B. Epoxy

C. Phenol Formaldehyde

D. Urea Formaldehyde

E. Melamine Formaldehyde

F. Polyesters

G. Silicones

13.3.3. Elastomers. A. Styrenic TPE (S‐TPE)

B. Polyurethanes (TPUs)

C. Copolyesters (COPS)

D. Olefinics (Thermoplastic Elastomeric Olefins—TEOs)

E. Thermoplastic Vulcanizates (TPVs)

REFERENCES

GENERAL REFERENCES

14 TESTING OF CELLULAR PLASTICS. 14.1. INTRODUCTION

14.2. RIGID FOAM TEST METHODS. 14.2.1. Density (ASTM D 1622, ISO 845)

14.2.2. Cell Size (ASTM D 3576, ISO 2896)

14.2.3. Open‐Cell Content (ASTM D 6226, ISO 4590)

14.2.4. Compressive Properties (ASTM D 1621, ISO 844)

14.2.5. Tensile Properties (ASTM D 1623)

14.2.6. Shear Properties (ASTM C 273)

14.2.7. Flexural Properties (ASTM D 790, ISO 178)

14.2.8. Dimensional Stability (ASTM D 2126, ISO 2796)

14.2.9. Water Absorption (ASTM D 2842, ISO 2896)

14.2.10. Water Absorption of Core Materials for Structural Sandwich Constructions (ASTM C 272)

14.2.11. Water Vapor Transmission (ASTM E 96)

14.2.12. Weathering Properties

14.2.13. Thermal Conductivity (ASTM C 177)

14.2.14. Flammability

14.2.15. Dielectric Constant and Dissipation Factor (ASTM D 1673)

14.3. FLEXIBLE CELLULAR MATERIALS TEST METHODS. 14.3.1. Introduction

14.3.2. Steam Autoclave Test

14.3.3. Constant Deflection Compression Set Test

14.3.4. Indentation Force Deflection Test

14.3.5. Air Flow Test

14.3.6. Compression Force Deflection Test

14.3.7. Dry Heat Test

14.3.8. Fatigue Test

14.3.9. Density Test

14.3.10. Tear‐Resistance Test

14.3.11. Tension Test

14.3.12. Resilience Test

14.4. FOAM PROPERTIES

GENERAL REFERENCES

15 FAILURE ANALYSIS. 15.1. INTRODUCTION

15.1.1. Material Selection

A. Material Selection Using Multipoint Data

B. Material Selection Process

C. Mechanical Properties

D. Thermal Properties

E. Exposure to Chemicals

F. Environmental Considerations

G. Regulatory Approval Requirements

H. Economics

I. Other Considerations

15.1.2. Design

15.1.3. Processing

A. Drying

B. Packing

C. Processing Temperature

D. Improper Additive/Regrind Mixing and Utilization

15.1.4. Service Conditions (Environmental Factors and User Abuse)

15.2. TYPES OF FAILURES

15.2.1. Mechanical Failure

A. Brittle Failures

B. Ductile Failures

C. Ductile to Brittle Transition

D. Fatigue Failures

E. Creep and Stress Relaxation

15.2.2. Thermal Failure

15.2.3. Chemical Failure

15.2.4. Environmental Failure

15.3. ANALYZING FAILURES

15.3.1. Visual Examination

15.3.2. Identification Analysis

15.3.3. Stress Analysis

A. Photoelastic Method

B. Brittle‐Coating Method

C. Strain Gauge Method

D. Chemical Method (Solvent Stress Analysis)

E. Heat Reversion Technique (ASTM F1057)

15.3.4. Microstructural Analysis (Microtoming)

15.3.5. Mechanical Testing

15.3.6. Thermal Analysis

15.3.7. Nondestructive Testing (NDT) Techniques

15.3.8. Fractography

15.3.9. Simulation Testing

15.4. CASE STUDIES

REFERENCES

GENERAL REFERENCES

CASE STUDY 1: COUNTERFEIT PLASTIC RESIN?* The Case

The Approach

End‐Group Analysis and Molecular Weight by NMR Spectroscopy

FTIR Analysis of Pressed Polymer Films

Extraction and Analysis of Additives

Conclusion

CASE STUDY 2: DUPLICATE FORMULATIONS*

The Approach

Fourier Transform Infrared Spectroscopy (FTIR)

Gas Chromatography (GC)

Notes

16 QUALITY CONTROL. 16.1. INTRODUCTION

16.2. STATISTICAL QUALITY CONTROL

16.2.1. Process Control Charts

A. Variables Control Charts ( and R Charts)

B. Control Charts for Attributes

16.2.2. Acceptance Sampling

A. Sampling Theory

B. Types of Sampling Plans

C. Classification of Sampling Plans

D. AQL Sampling Plan

E. Use of Sampling Tables

F. LTPD Sampling Plan

G .AOQL Sampling Plan

16.2.3. Process Capability. A. Introduction

B. Process Capability Studies

C. Process Capability Index, Cpk

16.2.4. Computerized Data Acquisition and Analysis

16.3. INTRODUCTION TO STATISTICAL PROCESS CONTROL. 16.3.1. Purpose of SPC

16.3.2. In‐Control Versus Out‐of‐Control Conditions

A. Out‐of‐Control Case 1: Outliers

B. Out‐of‐Control Case 2: Non‐normal Distribution

C. Out‐of‐Control Case 3: Time Dependencies

16.3.3. SPC, Process Capability and Quality

16.3.4. SPC Techniques

16.3.5. SPC Levels

16.4. QUALITY CONTROL SYSTEM. 16.4.1. Raw Material Quality Control

16.4.2. Process Quality Control

16.4.3. Product Quality Control

16.4.4. Visual Standards

16.4.5. Mold (Tool) Control

16.4.6. Workmanship Standards

16.4.7. Documentation

16.4.8. Quality Assurance Manual

16.5. GENERAL. 16.5.1. Quality Control and Machine Operators

16.6. SUPPLIER CERTIFICATION

REFERENCES

GENERAL REFERENCES

17 PRODUCT LIABILITIES AND TESTING. 17.1. INTRODUCTION

17.2. PRODUCT/EQUIPMENT DESIGN CONSIDERATIONS

17.3. PACKAGING CONSIDERATIONS

17.4. INSTRUCTIONS, WARNING LABELS, AND TRAINING

17.5. TESTING AND RECORDKEEPING

17.6. SAFETY STANDARDS ORGANIZATIONS

REFERENCES

SUGGESTED READING

18 NONDESTRUCTIVE TESTING AND MEASUREMENTS. 18.1. INTRODUCTION

18.2. ULTRASONIC

18.2.1. Pulse‐Echo Technique

18.2.2. Transmission Technique

18.2.3. Resonance Technique

18.3. APPLICATION OF ULTRASONIC NDT IN PLASTICS

18.4. GAMMA BACKSCATTER

18.5. BETA TRANSMISSION

18.6. SCANNING LASER

18.7. X‐RAY FLUORESCENCE

18.8. HALL EFFECT

18.9. CT SCANNING (X‐RAY COMPUTED TOMOGRAPHY)

REFERENCES

SUGGESTED READING

GENERAL REFERENCES

Note

19 PROFESSIONAL AND TESTING ORGANIZATIONS. 19.1. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

19.2. ASTM INTERNATIONAL

19.3. FOOD AND DRUG ADMINISTRATION (FDA)

19.4. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

19.5. NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

19.6. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

19.7. NATIONAL SANITATION FOUNDATION (NSF)

19.8. SOCIETY OF PLASTICS ENGINEERS (SPE)

19.9. PLASTICS INDUSTRY ASSOCIATION

19.10. UNDERWRITERS LABORATORIES (UL)

19.11. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

20 UNIFORM GLOBAL TESTING STANDARDS. 20.1. INTRODUCTION

20.2. ISO/IEC STANDARDS

20.3. ISO AND ASTM

20.4. TEST DATA ACQUISITION AND REPORTING

20.4.1. Mold Design and Construction

20.4.2. Test Specimen Dimensions

20.4.3. Process Parameters

20.4.4. Injection Molding Machine

20.5. COMPUTER‐AIDED MATERIAL PRESELECTION BY UNIFORM STANDARDS (CAMPUS)

20.6. PLASTIC MATERIAL DATABASES

REFERENCES

APPENDIX A INDEX OF TEST EQUIPMENT MANUFACTURERS

ALPHABETICAL INDEX OF COMPANIES ADDRESSES, PHONE NUMBERS, AND WEBSITES

APPENDIX B ABBREVIATIONS: POLYMERIC MATERIALS

APPENDIX C GLOSSARY. A

B

C

D

E

F

G

H

I

K

L

M

N

O

P

R

S

T

U

V

W

Y

Z

APPENDIX D TRADE NAMES*

Note

APPENDIX E STANDARDS ORGANIZATIONS. American Gas Association (AGA)

American National Standards Institute (ANSI)

American Society for Quality (ASQ)

ASTM International

American Society of Safety Engineers

Association of Home Appliance Manufacturers

BSI Group, UK

European Organization for Quality (EOQ)

EUROLAB (A European Organization for Laboratory Testing)

FM Global

International Association of Plumbing and Mechanical Officials (IAPMO)

International Organization for Standardization (ISO)

Juvenile Products Manufacturer’s Association

National Association for Surface Finishing

National Electrical Manufacturers Association (NEMA)

National Fire Protection Association (NFPA)

National Institute of Standards and Technology (NIST)

National Safety Council (NSC)

NSF International (NSF)

Polyurethane Manufacturer’s Association (PMA)

Plastics Industry Association (Plastics)

Underwriters Laboratories (UL)

APPENDIX F LINKS TO RECOMMENDED OPEN SOURCE FOR QUICK LEARNING

APPENDIX G WEB RESOURCES

APPENDIX H FIGURE 15‐5. NEW APPLICATION CHECKLIST (Courtesy of Covestro)

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

FOURTH EDITION

VISHU SHAH

.....

Over the past two decades, plastics testing has changed dramatically. Significant advances in materials and the increasingly demanding nature of plastics applications have combined with global demand for uniformity to produce a requirement for data that goes beyond basic material comparison. Data today are used for design purposes and complex models for the prediction of a material’s end‐use compatibility. As a result, the testing technology that was adequate to provide data in the past has, in some cases, become obsolete and major advances in testing equipment sophistication have been developed to create a whole new environment in the plastics laboratory. One of the main areas for future advancement will be related to the use of plastics‐based composites in the Automobile Industry. Recent amendments to the United States Government Corporate Average Fuel Economy (CAFÉ) regulatory requirements set a national fuel economy standard of 35 mpg by 2020. One of the ways automobile manufacturers will try and meet this goal will be through “light‐weighting”—the replacement of heavy metal parts, both structural and nonstructural, with plastics and plastic‐based composites. Advanced test methods that relate specifically to these new applications will be crucial to the success of the industry to meet the challenge.

The traditional laboratory of the past generated material data using methods that were developed from metals standards and other industries. While adequate for comparing one material to another for basic similarities and differences, the information that was generated did not reflect the variables that are specific to polymers—that is, the effect of temperature on properties and the important role that polymer structure plays on its overall performance in the end‐use application. With the complexity of the applications for polymers increasing, the need for more sophisticated testing techniques has also increased. State‐of‐the‐art polymer testing laboratories today utilize test equipment that is fully instrumented and capable of collecting data with higher accuracy that not only includes the basic properties but also the more complicated effect of external variables on those properties.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Plastics Testing and Failure Analysis
Подняться наверх