Applied Numerical Methods Using MATLAB

Applied Numerical Methods Using MATLAB
Автор книги: id книги: 1887698     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15452,9 руб.     (147,09$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119626824 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This new edition provides an updated approach for students, engineers, and researchers to apply numerical methods for solving problems using MATLAB ®  This accessible book makes use of MATLAB® software to teach the fundamental concepts for applying numerical methods to solve practical engineering and/or science problems. It presents programs in a complete form so that readers can run them instantly with no programming skill, allowing them to focus on understanding the mathematical manipulation process and making interpretations of the results. Applied Numerical Methods Using MATLAB®, Second Edition begins with an introduction to MATLAB usage and computational errors, covering everything from input/output of data, to various kinds of computing errors, and on to parameter sharing and passing, and more. The system of linear equations is covered next, followed by a chapter on the interpolation by Lagrange polynomial. The next sections look at interpolation and curve fitting, nonlinear equations, numerical differentiation/integration, ordinary differential equations, and optimization. Numerous methods such as the Simpson, Euler, Heun, Runge-kutta, Golden Search, Nelder-Mead, and more are all covered in those chapters. The eighth chapter provides readers with matrices and Eigenvalues and Eigenvectors. The book finishes with a complete overview of differential equations. Provides examples and problems of solving electronic circuits and neural networks Includes new sections on adaptive filters, recursive least-squares estimation, Bairstow's method for a polynomial equation, and more Explains Mixed Integer Linear Programing (MILP) and DOA (Direction of Arrival) estimation with eigenvectors Aimed at students who do not like and/or do not have time to derive and prove mathematical results Applied Numerical Methods Using MATLAB®, Second Edition is an excellent text for students who wish to develop their problem-solving capability without being involved in details about the MATLAB codes. It will also be useful to those who want to delve deeper into understanding underlying algorithms and equations.

Оглавление

Won Y. Yang. Applied Numerical Methods Using MATLAB

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Applied Numerical Methods Using MATLAB®

Preface

Acknowledgments

About the Companion Website

1 MATLAB Usage and Computational Errors. Chapter Outline

1.1 Basic Operations of MATLAB

1.1.1 Input/Output of Data from MATLAB Command Window

1.1.2 Input/Output of Data Through Files

1.1.3 Input/Output of Data Using Keyboard

1.1.4 Two‐Dimensional (2D) Graphic Input/Output

1.1.5 Three Dimensional (3D) Graphic Output

1.1.6 Mathematical Functions

1.1.7 Operations on Vectors and Matrices

1.1.8 Random Number Generators

1.1.8.1 Random Number Having Uniform Distribution

1.1.8.2 Random Number with Normal (Gaussian) Distribution

1.1.9 Flow Control. 1.1.9.1if‐endandswitch‐case‐endStatements

1.1.9.2for index=i_0:increment:i_last‐endLoop

1.1.9.3whileLoop

1.2 Computer Errors vs. Human Mistakes

1.2.1 IEEE 64‐bit Floating‐Point Number Representation

1.2.2 Various Kinds of Computing Errors

1.2.3 Absolute/Relative Computing Errors

1.2.4 Error Propagation

1.2.5 Tips for Avoiding Large Errors

1.3 Toward Good Program

1.3.1 Nested Computing for Computational Efficiency

1.3.2 Vector Operation vs. Loop Iteration

1.3.3 Iterative Routine vs. Recursive Routine

1.3.4 To Avoid Runtime Error

1.3.5 Parameter Sharing via GLOBAL Variables

1.3.6 Parameter Passing Through VARARGIN

1.3.7 Adaptive Input Argument List

Problems

2 System of Linear Equations. Chapter Outline

2.1 Solution for a System of Linear Equations

2.1.1 The Nonsingular Case (M = N)

2.1.2 The Underdetermined Case (M<N): Minimum‐norm Solution

2.1.3 The Overdetermined Case (M>N): Least‐squares Error Solution

2.1.4 Recursive Least‐Squares Estimation (RLSE)

2.2 Solving a System of Linear Equations

2.2.1 Gauss(ian) Elimination

2.2.2 Partial Pivoting

2.2.3 Gauss‐Jordan Elimination

2.3 Inverse Matrix

2.4 Decomposition (Factorization)

2.4.1 LU Decomposition (Factorization) – Triangularization

2.4.2 Other Decomposition (Factorization) – Cholesky, QR and SVD

2.5 Iterative Methods to Solve Equations

2.5.1 Jacobi Iteration

2.5.2 Gauss‐Seidel Iteration

2.5.3 The Convergence of Jacobi and Gauss‐Seidel Iterations

Problems

3 Interpolation and Curve Fitting. Chapter Outline

3.1 Interpolation by Lagrange Polynomial

3.2 Interpolation by Newton Polynomial

3.3 Approximation by Chebyshev Polynomial

3.4 Pade Approximation by Rational Function

3.5 Interpolation by Cubic Spline

3.6 Hermite Interpolating Polynomial

3.7 Two‐Dimensional Interpolation

3.8 Curve Fitting

3.8.1 Straight‐Line Fit – A Polynomial Function of Degree 1

3.8.2 Polynomial Curve Fit – A Polynomial Function of Higher Degree

3.8.3 Exponential Curve Fit and Other Functions

3.9 Fourier Transform

3.9.1 FFT vs. DFT

3.9.2 Physical Meaning of DFT

3.9.3 Interpolation by Using DFS

Problems

Note

4 Nonlinear Equations. Chapter Outline

4.1 Iterative Method toward Fixed Point

4.2 Bisection Method

4.3 False Position or Regula Falsi Method

4.4 Newton(‐Raphson) Method

4.5 Secant Method

4.6 Newton Method for a System of Nonlinear Equations

4.7 Bairstow's Method for a Polynomial Equation

4.8 Symbolic Solution for Equations

4.9 Real‐World Problems

Problems

5 Numerical Differentiation/Integration. Chapter Outline

5.1 Difference Approximation for the First Derivative

Richardson's Extrapolation

5.2 Approximation Error of the First Derivative

5.3 Difference Approximation for Second and Higher Derivative

5.4 Interpolating Polynomial and Numerical Differential

5.5 Numerical Integration and Quadrature

5.6 Trapezoidal Method and Simpson Method

5.7 Recursive Rule and Romberg Integration

5.8 Adaptive Quadrature

5.9 Gauss Quadrature

5.9.1 Gauss‐Legendre Integration

5.9.2 Gauss‐Hermite Integration

5.9.3 Gauss‐Laguerre Integration

5.9.4 Gauss‐Chebyshev Integration

5.10 Double Integral

5.11 Integration Involving PWL Function

Problems

6 Ordinary Differential Equations. Chapter Outline

6.1 Euler's Method

6.2 Heun's Method – Trapezoidal Method

6.3 Runge‐Kutta Method

6.4 Predictor‐Corrector Method

6.4.1 Adams‐Bashforth‐Moulton Method

Adams‐Bashforth‐Moulton Method with Modification Formulas

6.4.2 Hamming Method

Hamming Method with Modification Formulas

6.4.3 Comparison of Methods

6.5 Vector Differential Equations

6.5.1 State Equation

6.5.2 Discretization of LTI State Equation

6.5.3 High‐order Differential Equation to State Equation

6.5.4 Stiff Equation

6.6 Boundary Value Problem (BVP)

6.6.1 Shooting Method

6.6.2 Finite Difference Method

Problems

7 Optimization. Chapter Outline

7.1 Unconstrained Optimization. 7.1.1 Golden Search Method

Golden Search Procedure

7.1.2 Quadratic Approximation Method

7.1.3 Nelder‐Mead Method

Nelder‐Mead Algorithm

7.1.4 Steepest Descent Method

Steepest Descent Algorithm

7.1.5 Newton Method

7.1.6 Conjugate Gradient Method

Conjugate Gradient Algorithm

7.1.7 Simulated Annealing

7.1.8 Genetic Algorithm. Hybrid Genetic Algorithm

7.2 Constrained Optimization

7.2.1 Lagrange Multiplier Method

7.2.2 Penalty Function Method

7.3 MATLAB Built‐In Functions for Optimization

7.3.1 Unconstrained Optimization

7.3.2 Constrained Optimization

7.3.3 Linear Programming (LP)

7.3.4 Mixed Integer Linear Programming (MILP)

7.4 Neural Network[K‐1]

7.5 Adaptive Filter[Y‐3]

7.6 Recursive Least Square Estimation (RLSE)[Y‐3]

Problems

8 Matrices and Eigenvalues. Chapter Outline

8.1 Eigenvalues and Eigenvectors

8.2 Similarity Transformation and Diagonalization

8.3 Power Method

8.3.1 Scaled Power Method

SCALED POWER METHOD

8.3.2 Inverse Power Method

8.3.3 Shifted Inverse Power Method

8.4 Jacobi Method

8.5 Gram‐Schmidt Orthonormalization and QR Decomposition

8.6 Physical Meaning of Eigenvalues/Eigenvectors

8.7 Differential Equations with Eigenvectors

8.8 DoA Estimation with Eigenvectors[Y-3]

Problems

9 Partial Differential Equations. Chapter Outline

9.1 Elliptic PDE

9.2 Parabolic PDE

9.2.1 The Explicit Forward Euler Method

9.2.2 The Implicit Backward Euler Method

9.2.3 The Crank‐Nicholson Method

9.2.4 Using the MATLAB function ‘pdepe()’

9.2.5 Two‐Dimensional Parabolic PDEs

9.3 Hyperbolic PDES

9.3.1 The Explicit Central Difference Method

9.3.2 Two‐Dimensional Hyperbolic PDEs

9.4 Finite Element Method (FEM) for Solving PDE

9.5 GUI of MATLAB for Solving PDES – PDEtool

9.5.1 Basic PDEs Solvable by PDEtool

9.5.2 The Usage of PDEtool

9.5.3 Examples of Using PDEtool to Solve PDEs

Problems

Appendix A Mean Value Theorem. Theorem A.1 Mean Value Theorem

Theorem A.2 Taylor Series Theorem

Appendix B Matrix Operations/Properties. Chapter Outline

B.1 Addition and Subtraction

B.2 Multiplication

B.3 Determinant

B.4 Eigenvalues and Eigenvectors of a Matrix1

B.5 Inverse Matrix

B.6 Symmetric/Hermitian Matrix

B.7 Orthogonal/Unitary Matrix

B.8 Permutation Matrix

B.9 Rank

B.10 Row Space and Null Space

B.11 Row Echelon Form

B.12 Positive Definiteness

B.13 Scalar (Dot) Product and Vector (Cross) Product

B.14 Matrix Inversion Lemma

Note

Appendix C Differentiation W.R.T. A Vector

Appendix D. Laplace Transform

Appendix E Fourier Transform

Appendix F Useful Formulas

Appendix G Symbolic Computation. Chapter Outline

G.1 How to Declare Symbolic Variables and Handle Symbolic Expressions

G.2 Calculus. G.2.1 Symbolic Summation

G.2.2 Limits

G.2.3 Differentiation

G.2.4 Integration

G.2.5 Taylor Series Expansion

G.3 Linear Algebra

G.4 Solving Algebraic Equations

G.5 Solving Differential Equations

Appendix H Sparse Matrices

Appendix I MATLAB

References

Index

Index for MATLAB Functions

Index for Tables

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

Won Y. Yang

.....

The set of numbers S, E, and M, each represented by the sign bit S, the exponent field Exp and the mantissa field M, represents a number as a whole

(1.2.3)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Applied Numerical Methods Using MATLAB
Подняться наверх