Читать книгу Digital Cities Roadmap - Группа авторов - Страница 11

Preface

Оглавление

Due to their continuously growing populations, cities are facing major challenges in providing conditions that will contribute to the development of a healthy sustainable environment. This population growth has increased resource requirements and the demand for large-scale waste management systems and other services. Therefore, the aim of sustainable development is to provide processes for the planning, implementation and development of projects to meet the needs of modern communities without compromising the potential of future generations. Sustainability always includes a balance of priorities in various areas, including economics, community needs and environmental quality, as well as justice, health and well-being, energy, water and material resources, and transportation needs. Also, since communication is of fundamental importance for both internet access and new digital services, an important starting point for smart cities is the introduction of public Wi-Fi.

Another point of significant concern that has contributed to the advent of sustainable smart cities is the energy crisis brought about by the global demand for limited natural resources, which are declining as demand grows. These natural resources are used by the industrial, transport, commercial, and residential sectors. Those living in residential areas use energy mostly for space heating, followed by electronics, lighting and other appliances, water heating, air conditioning, and cooling. Because the global residential sector consumes a significant amount of energy, which is equivalent to one-third of all available primary energy resources, it is necessary to reduce energy consumption by using sustainable buildings. A good management strategy must be expected to mitigate the dangerous consequences of rapid urbanization in modern society, the economy and the environment. Since sustainable smart cities include established structures, infrastructures, communities, institutions, and individuals, the proposed solution should be the result of real interdisciplinary discussions in a multicultural environment that encourages communication and has a real chance of succeeding.

This book provides readers with a platform through which they can simulate all of the requirements for the development of smart sustainable cities. It helps readers interact, brainstorm, and work on common problems or discuss proven solutions and models. Moreover, it also deals with energy consumption. Such energy consumption leads to a rapid depletion of energy resources, an increased need for building maintenance, an improvised comfortable lifestyle, and an increase in time spent on building construction. A sustainable building mainly refers to the renewable sources used for construction that help the structure withstand atmospheric changes. Currently, all countries are looking for ecological materials; that is, renewable plant materials such as straw and clay bricks, wood from forests certified for sustainable management, recycled materials, and other nontoxic, reusable and renewable products. For sustainable and durable construction, energy efficiency is an urgent problem, and researchers are currently actively involved in this area. This book provides an in-depth analysis of design technologies that lay a solid foundation for sustainable buildings. Smart automation technologies that help save energy are also highlighted, as well as various performance indicators needed to make construction easier. The aim of this book is to create a strong research community and to impart a deep understanding of the latest knowledge regarding the field of energy and comfort, along with offering solid ideas in the near future for sustainable buildings. These buildings will help cities grow into smart cities. Since the focus of smart cities is on low energy consumption, renewable energy, and a small carbon footprint, researchers must study optimization methods in order to find the optimal use of energy resources.

The book is organized as follows: Chapter 1, “The Use of Machine Learning for Sustainable and Resilient Buildings,” provides insights into intelligent resources, artificial learning and big data analytics. A detailed study of the field of intelligent architecture is presented, which focuses on the role of machine learning and large-scale data analytics technologies. Finally, some of the challenges and opportunities of applying machine learning in the built environment are discussed. Chapter 2, “Fire Hazard Detection and Prediction by Machine Learning Techniques in Smart Buildings (SBs) Using Sensors and Unmanned Aerial Vehicle (UAV),” discusses various time-series methods used to calculate the threshold value of the parameters in UAV-based data, including the Naive Bayes, simple average, moving average, simple exponential smoothing (SES), Holt’s linear, Holt-Winters, and autoregressive integrated moving average (ARIMA) methods. Since variation in the degree of value from the threshold range is helpful in predicting different actions, the vector autoregressive (VAR) method is also discussed, which is a multivariate time-series analysis used to calculate the threshold value that considers all the features at once along with their impact on each other.

Chapter 3, “Sustainable Infrastructure Theories and Models,” introduces the concepts of data fusion and data fusion approaches with respect to sustainable infrastructure. This work computes and explains various data fusion tools, techniques, and important methods of decentralized and distributed detection. Several smart city infrastructure approaches are highlighted along with the smart city components architecture. Chapter 4, “Blockchain for Sustainable Smart Cities,” explains how a sustainable smart city is a key solution for the large-scale urbanization of rural areas. However, urbanization poses a number of challenges for governments and city planners, including increased traffic congestion, reduction in quality health service provision, burden on civic facilities, and data management among others. Blockchain is integrated into smart city applications to improve the standard of living of citizens and overall management of the smart city. With the advantage of blockchain, a smart city can provide efficient and reliable services to people. Chapter 5, “Contextualizing Electronic Governance, Smart City Governance and Sustainable Infrastructure in India: A Study and Framework,” surveys and shows the research gaps in various E-governance services developed and implemented in India that are being initiated to achieve the Digital India program launched by the government of India with the help of information and communication technology (ICT). Furthermore, the architectural framework for smart governance-based services for smart cities in India based on transforming electronic governance to governance in a smart city is proposed.

Chapter 6, “Revolutionizing Geriatric Design in Developing Countries: IoT-Enabled Smart Home Design for the Elderly,” presents a study that emanated from concern for the growing population of the elderly in our cities who are forced to live alone without much assistance due to shrinking family size and intercity and international migration of their children in search of better job opportunities. The study looks at the middle-class to upper-middle-class elderly population aged 65 and above living in urban cities of India such as Bangalore. This group usually comes from a well-educated background with mid-level financial security. Chapter 7, “Sustainable E-Infrastructure for Blockchain-Based Voting System,” explores the block-chain technology used to implement an electronic voting system. E-voting can change the way in which we have voted for decades. The main feature of this system is that voters can cast their vote from anywhere in the world. As this voting process starts going digital and online, voters from outside the country can also vote from wherever they are, which can increase the total voting percentages tremendously. Chapter 8, “Impact of IoT Enabled for Smart Cities: A Systematic Review and Challenges,” discusses the way in which the IoT has influenced specific areas of our daily lives. Moreover, the reader will discover the fundamental options that come with smart cities and exactly why a contemporary community is given that name, along with some of its problems and solutions. Additionally, this particular chapter covers the role of 5G technologies in the IoT along with big data analysis. Finally, it includes the primary options that come with the Indian perspective of smart cities by 2030 to enhance the daily lives of humans, along with conceptual and block diagrams.

Chapter 9, “Indoor Air Quality (IAQ) in Green Buildings: A Prerequisite to Human Health and Well-Being,” examines why the IAQ inside buildings is one of the most important determining factors of human health as more than half of the air inhaled by a person during his/her lifetime is at home. Illnesses associated with environmental exposure often stem from indoor air exposure. Prominent air pollutants are found indoors, including volatile organic compounds (VOCs), particulate matter (PM), carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), and asbestos. Smart and sustainable approaches to green building construction should incorporate IAQ as a critical component of building design as the air quality is directly related to the inhabitants’ sound well-being. Chapter 10, “An Era of Internet of Things Leads to Smart Cities Initiatives towards Urbanization,” outlines the components of smart cities and IoT technologies used in smart cities for establishing relationships between industries and their services, and includes a table showing various sectors providing different services and related principal issues of IoT technologies. Finally, the challenges of smart cities, urbanization, and IoT are highlighted. The perceived concept of the smart city appears to initiate the new standards for urban city planning. Urban planners imagine the city of the future as smart and economical. This initiative will always remain critical for development and sustainability. Chapter 11, “Trip-I-Plan: A Mobile Application for Task Scheduling in Smart City’s Sustainable Infrastructure,” provides comprehensive, automatic task rescheduling for mobile application. This approach will enhance the growth of smart city workers’ planning and boost the growth of smart sustainable infrastructure. Here, a comparative study of existing mobile applications of task scheduling is also presented.

Chapter 12, “Smart Health Monitoring for Elder Care in Indoor Environments,” discusses the various technologies that are being used by researchers to measure indoor environmental quality, human health and well-being along with case studies and real-life examples. Technology plays a crucial role in supporting the self-sufficient living of the elderly and their caregivers. However, the environmental quality of the spaces they reside in affects their health. Real-world case studies and their results are discussed in subsequent sections. Finally, available tools and research to aid readers delve further into this vital application area are discussed. Chapter 13, “A Comprehensive Study of IoT Security Risks in Building a Secure Smart City,” presents a holistic review of ML/DL algorithms that can be deployed to improve security. The IoT is capable of assimilating a variety of heterogeneous end systems by facilitating seamless access and communication among an expansive range of devices, people and their environment, making it the key feature in developing the idea of smart cities. This chapter delineates the challenges related to the technology’s implementation and standardization. It briefly overviews existing IoT architectures and enabling technologies, and also explores the prospects of ML/DL methodologies that can be implemented on the IoT platform to maintain an admissible level of services, security and privacy issues, with the aim of enhancing the overall experience of smart cities.

Chapter 14, “Role of Smart Buildings in Smart City: Components, Technologies, Indicators, Challenges, and Future Research Opportunities,” presents various indicators, technologies, components, and features of smart buildings in any smart city. General architectures are subsequently discussed along with the various supporting technologies and requirements of smart buildings for smart cities. The chapter ends with a discussion of the different challenges followed by future research opportunities in the domain of smart buildings in a smart city. Chapter 15, “Effects of Green Buildings on the Environment,” discusses concerns related to rapidly increasing environmental and sustainability issues like urbanization, climate change, loss of biodiversity and degradation of resources, which highlight the need for advancements in housing. Green building is the theory, science and styling of buildings planned and constructed in accordance with a minimum impact on the surroundings by reducing utilization of water, energy, and disturbances in the surrounding environment in which the building is located. This contribution is an attempt to appraise the value of green buildings compared to standard buildings. An attempt is also made to illustrate the available good practices regarding green structures in India.

The information provided in this book will be an incentive to the researchers, academicians and industry professionals interested in IoT-based architecture and sustainable buildings. The book also provides a platform to exchange knowledge in the field of energy efficiency and various tools and methods used to develop green technologies for construction in smart cities.

We would like to express our sincere gratitude to the contributors to the book, who supported us with the contribution of their valuable work and dedication to make this book a resounding success. Last but not the least, we thank Scrivener Publishing and associated production editors for handling the project and making this book a reality.

The Editors

January 2021

Digital Cities Roadmap

Подняться наверх