Читать книгу Cloud and IoT-Based Vehicular Ad Hoc Networks - Группа авторов - Страница 68

References

Оглавление

1. Texas A&M Transportation Institute, Technical Report 2015 Urban Mobility Score card, INRIX, Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-scorecard-2015.pdf (accessed on 11 October 2017).

2. United Nations Population Fund (UNFPA), State of World Population 2011: People and Possibilities in a World of 7 Billion, Technical Report, United Nations Population Fund, New York, NY, USA, 2011.

3. Population Reference Bureau, 2016 World Population Datasheet, Inform Empower Advance, 2016. http://www.prb.org/pdf16/prb-wpds2016-web-2016.pdf (accessed on 11 October 2017).

4. USA Today, NHTSA to Require Backup Cameras on All Vehicles. https.Com/story/money/cars/2014/03/31/nhtsa-rear-view-cameras/7114531/(accessed on 11 October 2017).

5. Automotive Sensors and Electronics Expo. Available online: http://www.Automotivesensors2017.com (accessed on 11 October 2017).

6. Abdelhamid, S., Hassanein, H.S., Takahara, G., Vehicle as a Mobile Sensor. Procedia Comput. Sci., 34, 286–295, 2014.

7. Silva, C., Masini, B., Ferrari, G., Thibault, I., A Survey on Infrastructure-Based Vehicular Networks. Mob. Inf. Syst., 2017, 28, 2017.

8. Omar, H., Zhuang, W., Li, L., VeMAC: A TDMA based MAC protocol for reliable broadcast in VANETs. IEEE Trans. Mob. Comput., 12, 1724–1736, 2012.

9. Bharati, S. and Zhuang, W., CAH-MAC: Cooperative AD HOC MAC for vehicular networks. IEEE J. Sel. Areas Commun., 13, 470–479, 2013.

10. Wu, X., Subramanian, S., Guha, R., White, R., Li, J., Lu, K., Zhang, T., Vehicular Communications Using DSRC: Challenges, Enhancements, and Evolution. IEEE J. Sel. Areas Commun., 31, 399–408, 2013.

11. Wang, L., Iida, R.F., Wyglinski, A.M., Performance Analysis of EDCA for IEEE 802.11p/DSRC Based V2V Communication in Discrete Event System, in: Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, Toronto, ON, Canada, 24–27 September 2017.

12. Dhanya, V. and Martin, R., An efficient computerized error control transceiver system for DSRC applications, in: Proceedings of the 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 112–116, Coimbatore, India, 28–29 July 2017.

13. Gambhir, N. and Sharma, P., A hybrid approach for intelligent communication and performance analysis over DSRC VANET, in: Proceedings of the 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1–5, Indore, India, 17–19 August 2017.

14. Zhou, H., Cheng, N., Yu, Q., Sherman Shen, X., Shan, D., Bai, F., Toward Multi-Radio Vehicular Data Piping for Dynamic DSRC/TVWS Spectrum Sharing. IEEE J. Sel. Areas Commun., 34, 2575–2588, 2016.

15. Ihara, Y., Kremo, H., Altintas, O., Tanaka, H., Ohtake, M., Fujii, T., Tsuru, M., Distributed Autonomous multi-hop vehicle-to-vehicle communications over TV white space, in: Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC), pp. 336–344, Las Vegas, NV, USA, 11–14 January 2013.

16. Wang, T., Song, L., Han, Z., Coalitional graph games for popular content distribution in cognitive radioVANETs. IEEE Trans. Veh. Technol., 62, 4010–4019, 2013.

17. Altintas, O., Ihara, Y., Kremo, H., Tanaka, H., Ohtake, M., Fujii, T., Yoshimura, C., Ando, K., Sukamoto, K., Tsuru, M. et al., Field tests and indoor emulation of distributed autonomous multi-hop vehicle-to-vehicle communications over TV white space. ACM SIGMOBILE Mob. Comput. Commun. Rev., 16, 54–57, 2013.

18. Tiwari, P. and Kushwah, R., Traffic analysis for VANET using WAVE and WiMAX, in: Proceedings of the International Conference on Communication Networks (ICCN), pp. 343–346, Gwalior, India, 19–21 November 2015.

19. Hsu, Y., Wang, K., Tseng, Y., Efficient cooperative access class barring with load balancing and traffic adaptive radio resource management for M2M communications over LTE-A. Comput. Netw., 73, 268–281, 2014.

20. Doyle, N., Jaber, N., Tepe, K., Complete architecture and demonstration design for a new combined WiMAX/DSRC system with improved vehicular networking efficiency. Ad Hoc Netw., 11, 2026–2048, 2013.

21. Mitra, R.N. and Agrawal, D.P., 5G mobile technology: A survey. ICT Express, 1, 132–137, 2015.

22. Mohseni-Ejiyeh, A. and Ashouri-Talouki, M., SeVR+: Secure and privacy-aware cloud-assisted video reporting service for 5G vehicular networks, in: Proceedings of the Iranian Conference on Electrical Engineering (ICEE), pp. 2159–2164, Tehran, Iran, 2–4 May 2017.

23. Schmidhammer, M., Sand, S., Soliman, M., de Ponte Muller, F., 5G signal design for roasurveillance, in: Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6, Bremen, Germany, 25–26 October 2017.

24. Sathishkumar, R., Somasundaram, K., Sherwin, M., Mohnnish, D., Cloud based video reporting Service in 5G enabled smart transportation system in vehicular networks, in: Proceedings of the 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), pp. 1–6, Karur, India, 27–28 April 2017.

25. Khan, A.A., Abolhasan, M., Ni, W., 5G next generation VANETs using SDN and fog computing framework, in: Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–6, Las Vegas, NV, USA, 12–15 January 2018.

26. Reyes, A., Barrado, C., Guerrero, A., Communication technologies to design vehicle-to-vehicle and vehicle-to-infrastructures applications. Lat. Am. Appl. Res., 46, 29–35, 2016.

27. Frenzel, L., The Battle over V2VWireless Technologies, Available online: http://www.mwrf.com/systems/battle-over-v2v-wireless-technologies, accessed on 28 March 2018.

28. Suthanthira Vanitha, N., Vehicle Tracking and Locking System Based on GSM and GPS. Int. J. Intell. Syst. Appl., 5, 9, 86–93, 2013.

29. Suthanthira Vanitha, N., Karthikeyan, J., Kavitha, G., Radhika, K., Modelling of Intelligent Transportation System for Human Safety using IoT. Mater. Today: Proceedings, 33, 4026–4029, 2020. https://doi.org/10.1016/j.matpr. 2020.06.421.

30. Radhika, K. and Mohana Geetha, D., Augmented Recurrence Hopping Based Run-Length Coding for Test Data Compression Applications. Wireless Pers. Commun., 102, 3361–3374, 2018.

31. Kyriakou, C., Christodoulou, S.E., Dimitriou, L., Roadway pavement anomaly classification utilizing smart phones and artificial intelligence, in: Proceedings of the 2016 18th Mediterranean Electro technical Conference (MELECON), pp. 1–6, Lemesos, Cyprus, 18–20 April 2016.

32. Zhang, J., Wang, F., Wang, K., Lin, W., Xu, X., Chen, C., Data-Driven Intelligent Transportation System: A survey. IEEE Trans. Intell. Transp. Syst., 12, 1624–1639, 2011.

33. Haluzová, P., Effective data mining for a transportation information system. Acta Polytech., 48, 24–29, 2008.

34. Kumar, A., Payal, M., Dixit, P., Chatterjee, J.M., Framework for Realization of Green Smart Cities through the Internet of Things (IoT), in: Trends in Cloud-based IoT. EAI/Springer Innovations in Communication and Computing, F. Al-Turjman (Ed.), Springer, Cham, 2020.

35. Le, D.N., Kumar, R., Chatterjee, J.M., Introductory Concepts of Wireless Sensor Network, in: Theory and Applications, GRIN Verlag, 2018. https://www.grin.com/document/385908.

36. Gaur, L., Developing Internet of Things Maturity Model (IoT-MM) for Manufacturing. Int. J. Innov. Technol. Exploring Eng. (IJITEE), 9, 1, 2473–2479, November 2019. The B Impact Factor of IJITEE is 5.54 for year 2018. https://www.ijitee.org/download/volume-9-issue-1/.

37. Almusaylim, Z.A. and Zaman, N., A review on smart home present state and challenges: Linked to context-awareness internet of things (IoT). Wirel. Netw., 25, 6, 3193–3204, 2019. https://doi.org/10.1007/s11276-018-1712-5.

38. Seera, N.K. and Jain, V., Perspective of Database Services for Managing Large-Scale Data on the Cloud: A Comparative Study. Int. J. Mod. Educ. Comput. Sci. (IJMECS), 7, 6, 50–58, June, 2015.

39. Almusaylim, A. and Jhanjhi, Z.N., Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wireless Pers. Commun., 111, 541–564, 2020. https://doi.org/10.1007/s11277-019-06872-3.

* Corresponding author: suthanthira.n.eee@mec.edu.in

Cloud and IoT-Based Vehicular Ad Hoc Networks

Подняться наверх