Magma Redox Geochemistry

Magma Redox Geochemistry
Автор книги: id книги: 2160098     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 20103,4 руб.     (219,04$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119473244 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Magma Redox Geochemistry Magma Redox Geochemistry The redox state is one of the master variables behind the Earth’s forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so farRedox processes from Earth’s accretion to global geodynamicsRedox evolution from the magma source to volcanic emissionsRedox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Оглавление

Группа авторов. Magma Redox Geochemistry

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Geophysical Monograph Series

Geophysical Monograph 266. Magma Redox Geochemistry

LIST OF CONTRIBUTORS

PREFACE

1 Redox Equilibria: From Basic Concepts to the Magmatic Realm

ABSTRACT

1.1. GENERAL ASPECTS AND RATIONALE. 1.1.1. Oxidation Number, Electron Transfer, and Half‐Reactions

1.1.2. The Redox Potential in Solutions and the Ligand Role

1.2. OXYGEN FUGACITY: THE CENTRALITY OF AN ELUSIVE PARAMETER

1.3. CONCLUDING REMARKS AND PERSPECTIVES

ACKNOWLEDGMENTS

REFERENCES

2 Redox Processes Before, During, and After Earth’s Accretion Affecting the Deep Carbon Cycle

ABSTRACT

2.1. THE REDOX STATE OF PLANETARY INTERIORS AND THE SPECIATION OF CARBON IN THE EARTH

2.2. OXIDATION STATE OF EARTH’S BUILDING BLOCKS AND EARLY DIFFERENTIATION

2.2.1. The Solar Nebula Redox State. The fO2 of Chondrites

The fO2 of Planetesimals and the Role of Volatiles

The Oxidation State of Earth’s Interior, Other Planets, and Meteorites

2.3. MANTLE OXIDATION STATE OVER TIME AND ITS EFFECT ON THE C–O–H VOLATILE SPECIATION

2.3.1. The Redox State of the Upper Mantle and the Mobilization of Deep C

2.3.2. Is the fO2 of the Transition Zone and Lower Mantle Recorded by Sublithospheric Diamonds?

2.3.3. Temporal and Spatial Evolution of the Redox State of the Asthenospheric Mantle

2.4. THE MANTLE GREAT OXIDATION EVENT: FACT OR ARTEFACT?

ACKNOWLEDGMENTS

REFERENCES

3 Oxygen Fugacity Across Tectonic Settings

ABSTRACT

3.1. INTRODUCTION

3.1.1. Theoretical Background

3.1.2. Fe‐Based Oxybarometry

3.1.3. Trace‐Element Oxybarometry

3.1.4. Other Oxybarometers

3.2. SAMPLE SELECTION, METHODOLOGY, AND DESIGN OF THIS STUDY

3.3. RESULTS

3.3.1. Fe‐Based Oxybarometry. Mid‐Ocean Ridges

Arcs and Back Arcs

Plumes

3.3.2. V/Yb Concentrations

3.4. DISCUSSION

3.4.1. Linking the fO2 of Volcanics and Mantle Lithologies

Degassing

Crystal Fractionation

Inferences about Mantle fO2 as a Function of Tectonic Setting

3.5. CONCLUSIONS AND FUTURE DIRECTIONS

ACKNOWLEDGMENTS

METHODS APPENDIX

REFERENCES

4 Redox Variables and Mechanisms in Subduction Magmatism and Volcanism

ABSTRACT

4.1. INTRODUCTION

4.2. REDOX VARIABLES. 4.2.1. Intensive and Extensive Redox Variables

4.2.2. Uses of Redox‐Sensitive Elements

4.2.3. Measurement Techniques

4.3. MECHANISMS

4.3.1. Processes Affecting the Slab Prior to Subduction

A Note of Caution

4.3.2. Devolatilization of the Slab

Mantle Lithosphere

Oceanic Crust

Sediments

4.3.3. Fluid/Melt Transfer and Mantle Metasomatism – Is the Sub‐Arc Mantle More Oxidized than Mantle Elsewhere?

Yes

No

4.3.4. Formation of Primary Magmas in the Sub‐Arc Mantle

Role of Volatiles

Role of Refertilization

4.3.5. Modification of Primary Magmas

Differentiation

Degassing

Redox Aspects of Ore Deposit Formation Associated with Arc Magmas

4.4. DISCUSSION. 4.4.1. Temporal Variation

4.4.2. Opportunities

4.4.3. Synthesis

ACKNOWLEDGMENTS

REFERENCES

5 Redox Melting in the Mantle

ABSTRACT

5.1. INTRODUCTION

5.2. MANTLE MELTING WITH VOLATILE COMPONENTS

5.3. REDOX MELTING. 5.3.1. Development of the Concept

5.3.2. Redox Melting Mechanisms

5.4. COMPOSITIONS OF MELTS FORMED BY REDOX MELTING

5.5. THE OXIDATION STATE IN THE MANTLE LITHOSPHERE, ASTHENOSPHERE, AND SUBDUCTION ZONES

5.6. DISCUSSION

5.6.1. Spatial Variations in Oxidation State on the Modern Earth. Lower Cratonic Lithosphere

The Subduction Environment and Recycled Blocks

5.6.2. The Evolution of Mantle Oxidation States through Earth History

Redox State of the Mantle in the Archean

Evolution of Alkaline Melt Types as a Sensor of the Evolving Incipient Melting Regime

Subduction Before the Great Oxidation Event (GOE)

Redox Melting Before the Cratons

5.7. CLOSING COMMENTS

ACKNOWLEDGMENTS

REFERENCES

6 Ionic Syntax and Equilibrium Approach to Redox Exchanges in Melts: Basic Concepts and the Case of Iron and Sulfur in Degassing Magmas

ABSTRACT

6.1. INTRODUCTION

6.2. IONIC SYNTAX, SPECIATION STATE AND THE MELT/GLASS NETWORK: STATE OF THE ART AND CONCEPTUAL FRAMEWORK

6.2.1. The Effect of Melt Composition on Iron and Sulfur Oxidation State

6.2.2. Fe–S Mutual Interactions

6.3. REDOX EVOLUTION AND MAGMATIC DEGASSING

6.3.1. Mechanisms of Sulfur Release on Magma Rise

6.3.2. Application to Real Cases

6.4. DISCUSSION. 6.4.1. Who Controls What: the Composition/Polymerization/Acid–Base/Redox Connection

6.4.2. Magma Degassing: Oxygen as a Perfectly Mobile Component and the Role of Gas Redox Buffers

6.5. CONCLUSIONS

CODE AVAILABILITY

ACKNOWLEDGMENTS

REFERENCES

7 The Petrological Consequences of the Estimated Oxidation State of Primitive MORB Glass

ABSTRACT

7.1. INTRODUCTION

7.2. MODELING METHODS AND SAMPLE SELECTION. 7.2.1. Simple Model

7.2.2. PRIMELT3

7.2.3. pMELTS and rhyoliteMELTS

7.2.4. Choice of Reference Samples

7.3. RESULTS. 7.3.1. PRIMELT3, Potential Temperature, and Host‐Phenocryst‐Inclusion Equilibrium

7.3.2. pMELTS, Potential Temperature, and Typical Oceanic Crustal Thickness

7.3.3. rhyoliteMELTS and Implications for Origin of Oceanic Lower Crust

7.4. SUMMARY AND PROSPECTS

ACKNOWLEDGMENTS

REFERENCES

8 Oxygen Content, Oxygen Fugacity, the Oxidation State of Iron, and Mid‐Ocean Ridge Basalts

ABSTRACT

8.1. OXYGEN CONTENT, OXYGEN FUGACITY, AND THE OXIDATION STATE OF IRON

8.2. MID‐OCEAN RIDGE BASALTS

ACKNOWLEDGMENTS

REFERENCES

9 Chromium Redox Systematics in Basaltic Liquids and Olivine

ABSTRACT

9.1. INTRODUCTION

9.1.1. Some Applications of Cr‐Redox Systematics to Petrologic Problems

9.1.2. Overview of Chapter Content

9.2. MEASURING CR VALENCE IN GEOLOGIC MATERIALS WITH CR‐K EDGE XANES SPECTROSCOPY

9.2.1. Quench Modification of Cr2+/∑Cr in Fe‐bearing Glasses

9.2.2. XANES Anisotropy in Non‐Isometric Silicate Minerals

9.3. CR‐REDOX SYSTEMATICS IN SILICATE LIQUIDS: WHAT WE KNOW AND DON’T KNOW

9.3.1. The First Direct Measurements of Cr Valence in Quenched Liquids

9.3.2. Indirect Studies of Cr Valence using Cr‐Spinel Buffered Basaltic Liquids

9.3.3. XANES Studies of Cr Valence in CMAS and Basaltic Liquids

9.3.4. Existing Knowledge Gaps and Future Directions

9.4. CR‐VALENCE SYSTEMATICS IN EQUILIBRIUM LIQUID‐OLIVINE PAIRS

9.4.1. Existing Knowledge Gaps and Future Directions

9.5. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

10 The Thermodynamic Controls on Sulfide Saturation in Silicate Melts with Application to Ocean Floor Basalts

ABSTRACT

10.1. INTRODUCTION

10.2. SULFIDE CAPACITY

10.2.1. The Experimental Sulfur Solubility Minimum

10.3. THE THERMODYNAMIC MEANING OF THE SULFIDE CAPACITY

10.3.1. The Fe3+ Problem

10.3.2. Sulfate Capacities,

10.3.3. Other Capacities for Anions and Anion Complexes in Silicate Melts

10.4. A NEW PARAMETERIZATION OF SULFIDE CAPACITY FOR BASALTIC MELTS

10.4.1. Temperature Dependence of

10.5. SULFIDE CONTENT AT SULFIDE SATURATION (SCSS)

10.5.1. Fitting the Experimental Data on SCSS on Anhydrous Compositions

10.5.2. The Effect of Pressure on SCSS

10.5.3. The Dependence of SCSS on FeO

10.5.4. The Effect of H2O

10.6. APPLICATION TO MID‐OCEAN RIDGE AND SIMILAR BASALTS

10.6.1. Sensitivity analysis

10.6.2. Is Neglecting H2O in OFB Glasses Justified?

10.6.3. Comparison with Previous Models

10.6.4. Application to Other OFB Glass Datasets

10.6.5. Siqueiros OFB Olivine‐Hosted Melt Inclusions

10.7. THE SULFUR FUGACITY (f S2) OF OCEAN FLOOR BASALTS

10.8. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

11 Redox State of Volatiles and Their Relationships with Iron in Silicate Melts: Implications for Magma Degassing

ABSTRACT

11.1. INTRODUCTION

11.2. WATER CONCENTRATION IN MELT AND ITS EFFECT ON REDOX

11.3. THE SULFUR SPECIES AND THE REDOX (FE3+/∑FE Ratio) OF SILICATE MELTS. 11.3.1. Sulfur Speciation in Natural Magmas

11.3.2. Improvement of the Spectroscopic Methods to Probe the Sulfur Valence States in Silicate Melts

11.3.3. The Sulfur Minimum

11.3.4. Sulfur Concentration and Redox as a Function of fO2

11.3.5. The Sulfide–Sulfate Transition

11.3.6. The Sulfide–Sulfate Transition and its Key Role on the Sulfur Behavior During Magma Evolution and Decompression

11.3.7. Fluid‐Melt Partitioning of Sulfur

11.4. NATURAL SYSTEMS: MAGMA DEGASSING AND REDOX

11.4.1. Basaltic Systems

11.4.2. Intermediate to Silicic Systems

11.5. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

12 Iron in Silicate Glasses and Melts: Implications for Volcanological Processes

ABSTRACT

12.1. INTRODUCTION

12.2. IRON DISTRIBUTION IN THE DIFFERENT TERRESTRIAL ENVELOPES

12.3. REDOX EQUILIBRIUM IN MELTS

12.3.1. Temperature, Oxygen Fugacity, and Pressure Effects

12.3.2. Influence of the Melt Structure and Composition. Introductory Remarks about the Structure of Silicate Melts and Glasses

Iron Environment in Melts and Glasses

Melt Composition and Iron Oxidation State

12.4. PHYSICAL PROPERTIES: HIGHLIGHTS ON DENSITY AND VISCOSITY

12.4.1. Influence of Iron Content and Redox on the Density of Melts

12.4.2. Iron and the Viscosity of Silicate Melts

12.5. INFLUENCES ON CRYSTALLIZATION AND DEGASSING IN MAGMATIC SYSTEMS

12.6. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

13 How to Measure the Oxidation State of Multivalent Elements in Minerals, Glasses, and Melts?

ABSTRACT

13.1. INTRODUCTION

13.2. WET‐CHEMICAL ANALYSES

Advantages, drawbacks, accuracy

13.3. ELECTRONIC MICROPROBE

Advantages, drawbacks, accuracy

13.4. MÖSSBAUER SPECTROSCOPY

Advantages, drawbacks, accuracy

13.5. OPTICAL ABSORPTION SPECTROSCOPY

Advantages, drawbacks, accuracy

13.6. X‐RAY ABSORPTION SPECTROSCOPY

13.6.1. K‐edge XANES Spectra of 3d Transition Elements

13.6.2. Extracting Information from XANES Spectra

Advantages, drawbacks, accuracy

13.7. RAMAN SPECTROSCOPY

13.7.1. Spectrometer, Technical Designs, Acquisition Parameters

13.7.2. Raman Spectra

13.7.3. Spectral Pre‐Treatment: Background Subtraction and Normalization

13.7.4. Details on Raman Spectra of Silicate Glasses

13.7.5. Raman Spectra of Iron Silicate Glass

Advantages, drawbacks, accuracy

13.8. IN SITU REDOX DETERMINATION AT HIGH TEMPERATURE OR AT HIGH PRESSURE

13.9. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

Notes

14 Oxidation State, Coordination, and Covalency Controls on Iron Isotopic Fractionation in Earth’s Mantle and Crust: Insights from First‐Principles Calculations and NRIXS Spectroscopy

ABSTRACT

14.1. INTRODUCTION

14.2. THEORY: EQUILIBRIUM ISOTOPIC FRACTIONATION FROM VIBRATIONAL PROPERTIES

14.3. CALCULATION OF VIBRATIONAL PROPERTIES. 14.3.1. First‐Principles Calculations

14.3.2. NRIXS Spectroscopy

14.4. IRON ISOTOPE STUDIES BASED ON NRIXS OR DFT

14.5. COMPARISON OF EQUILIBRIUM FRACTIONATION FACTORS DERIVED FROM VARIOUS TECHNIQUES

14.6. PARAMETERS CONTROLLING EQUILIBRIUM FRACTIONATION FACTORS

14.7. SELECTED APPLICATIONS TO THE INTERPRETATION OF IRON ISOTOPIC VARIATIONS IN IGNEOUS ROCKS

14.7.1. Mineral‐Melt Fractionation and the Heavy Fe Isotopic Composition of the Crust

14.7.2. Isotopic Fractionation During Magmatic Differentiation

14.7.3. Isotopic Fractionation in Arc Lavas

14.8. CONCLUSIONS AND PERSPECTIVES

ACKNOWLEDGMENTS

REFERENCES

15 The Role of Redox Processes in Determining the Iron Isotope Compositions of Minerals, Melts, and Fluids

ABSTRACT

15.1. INTRODUCTION

15.2. PRINCIPLES AND NOMENCLATURE

15.3. METHODS FOR THE CALIBRATION OF IRON ISOTOPE FRACTIONATION FACTORS

15.3.1. Theoretical

15.3.2. Experimental

15.3.3. Spectroscopic

15.4. FUNDAMENTAL CONTROLS ON ISOTOPIC FRACTIONATION BETWEEN MINERALS, MELTS, AND FLUIDS

15.4.1. Minerals

15.4.2. Melts

15.4.3. Fluids

15.5. EFFECT OF REDOX PROCESSES IN INFLUENCING IRON ISOTOPE FRACTIONATION IN NATURAL SYSTEMS

15.5.1. Magmatic Processes

Partial Melting

Differentiation

15.5.2. Fluid Transfer from Mantle to Crust

Altered Oceanic Lithosphere

Subducted Oceanic Lithosphere

Iron Bearing Fluids Transferred to the Mantle Wedge

15.6. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

Notes

16 Zinc and Copper Isotopes as Tracers of Redox Processes

ABSTRACT

16.1. INTRODUCTION

16.2. THE DETERMINATION OF CU AND ZN ISOTOPE RATIOS

16.3. THEORETICAL AND EXPERIMENTAL CONSTRAINTS ON CU AND ZN ISOTOPE BEHAVIOR IN RELATION TO REDOX PROCESSES

16.4. APPLICATION OF CU AND ZN TO TRACE REDOX PROCESSES IN NATURAL SYSTEMS. 16.4.1. Hydrothermal Systems

Early Studies

Porphyry Systems

Magmatic Systems

16.4.2. Tracers of Fluid Rock Reactions and Subduction Zone Mass Transfer

16.5. SUMMARY AND CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

17 Mineral‐Melt Partitioning of Redox‐Sensitive Elements

ABSTRACT

17.1. INTRODUCTION

17.2. THEORETICAL BACKGROUND

17.2.1. Homogeneous Equilibria

17.2.2. Heterogeneous Equilibria

17.2.3. Mineral/Melt Partitioning as a Function of fO2

17.3. TRANSITION METALS (Fe, Cr, Ti, V)

17.3.1. Iron (Fe)

17.3.2. Chromium (Cr)

17.3.3. Titanium (Ti)

17.3.4. Vanadium (V)

17.4. RARE EARTHS (Ce, Eu)

17.5. URANIUM (U)

17.6. SIDEROPHILE ELEMENTS (Mo, W, Re, Pt GROUP ELEMENTS)

17.6.1. Molybdenum (Mo), Tungsten (W), and Rhenium (Re)

17.6.2. Platinum Group Elements (Ru, Rh, Pd, Os, Ir, Pt)

17.7. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

Note

18 Titanomagnetite – Silicate Melt Oxybarometry

ABSTRACT

18.1. INTRODUCTION

18.2. OXYBAROMETERS RELATED TO TITANOMAGNETITE

18.3. OXYBAROMETERS BASED ON MINERAL EQUILIBRIA INVOLVING TITANOMAGNETITE

18.4. OXYBAROMETERS BASED ON ELEMENT PARTITIONING BETWEEN TITANOMAGNETITE AND SILICATE MELT

18.4.1. Vanadium Partitioning Oxybarometry

18.4.2. FeTiMM

18.5. APPLICATION OF TITANOMAGNETITE‐BASED OXYBAROMETERS TO NATURAL SILICIC ROCKS

18.6. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

SUPPLEMENTARY REFERENCES

19 The Redox Behavior of Rare Earth Elements

ABSTRACT

19.1. INTRODUCTION

19.1.1. Trace Elements

19.1.2. Lanthanides

19.2. GEOCHEMISTRY OF RARE EARTH ELEMENTS

19.3. MULTIVALENT RARE EARTH ELEMENTS

19.3.1. Europium

19.3.2. Cerium

19.3.3. Influence of Other Elements: Mutual Interactions

Fe‐Eu Mutual Interactions

19.3.4 Other Multivalent Rare Earth Elements

19.4. CONCLUSIONS AND PERSPECTIVES

ACKNOWLEDGMENTS

REFERENCES

Notes

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Roberto Moretti Daniel R. Neuville

.....

(1.36)

and to which the following E‐pO2– relationships correspond (CO32– and SO42– anions having unitary activity):

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Magma Redox Geochemistry
Подняться наверх