Читать книгу Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems - Группа авторов - Страница 67

References

Оглавление

1 1 Fofana, I. (2013). 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 29 (5): 13–25.

2 2 Rakesh, C. and Thomas, M.J. (2016). Pongamia oil, an eco‐friendly alternative for mineral oil used in high voltage transformers. In Proc. 2016 IEEE Int. Conf. Dielectr. ICD 2016, vol. 2, pp. 959–962.

3 3 Martins, M. (2010). Vegetable oils, an alternative to mineral oil for power transformers‐experimental study of paper aging in vegetable oil versus mineral oil. IEEE Electr. Insul. Mag. 26 (6): 7–13.

4 4 Farade, R.A., Wahab, N.I.B.A., Mansour, D.E.A. et al. (2020). Investigation of the dielectric and thermal properties of non‐edible cottonseed oil by infusing h‐BN nanoparticles. IEEE Access 8: 76204–76217.

5 5 Martins, M.A.G. (2010). Correction to vegetable oils, an alternative to mineral oil for power transformers–experimental study of paper aging in vegetable oil versus mineral oil. IEEE Electr. Insul. Mag. 26 (6): 7–13.

6 6 Wilhelm, H.M., Stocco, M.B.C., Tulio, L. et al. (2013). Edible natural ester oils as potential insulating fluids. IEEE Trans. Dielectr. Electr. Insul. 20 (4): 1395–1401.

7 7 Das, A.K., Shill, D.C., and Chatterjee, S. (2020). Potential of coconut oil as a dielectric liquid in distribution transformers. IEEE Electr. Insul. Mag. 36 (6): 36–46.

8 8 Beltrán, N., Palacios, E., and Blass, G. (2017). Potential of Jatropha curcas oil as a dielectric fluid for power transformers. IEEE Electr. Insul. Mag. 33 (2): 8–15.

9 9 Sitorus, H.B.H., Beroual, A., Setiabudy, R., and Bismo, S. (2015). Pre‐breakdown phenomena in new vegetable oil – based jatropha curcas seeds as substitute of mineral oil in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 22 (5): 2442–2448.

10 10 Trnka, P., Mentlik, V., and Svoboda, M. (2014). Ecologically acceptable insulating liquids for electrical appliances. In Proc. 2014 IEEE 18th Int. Conf. Dielectr. Liq. ICDL 2014, pp. 3–6.

11 11 Oommen, T.V. (2002). Vegetable oils for liquid‐filled transformers. IEEE Electr. Insul. Mag. 18 (1): 6–11.

12 12 Dung, N.V. and Huong, H.L. (2020). The effect of antioxidants on the physical and chemical properties of rice oil, corn oil, peanut oil and Kraft paper. IEEE Trans. Dielectr. Electr. Insul. 27 (5): 1698–1706.

13 13 Kumar, S.S., Iruthayarajan, M.W., Bakrutheen, M., and Kannan, S.G. (2016). Effect of antioxidants on critical properties of natural esters for liquid insulations. IEEE Trans. Dielectr. Electr. Insul. 23 (4): 2068–2078.

14 14 Du, B.X. and Li, X.L. (2017). Dielectric and thermal characteristics of vegetable oil filled with BN nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 24 (2): 956–963.

15 15 Carcedo, J., Fernandez, I., Ortiz, A. et al. (2016). Quantitative study on the aging of kraft paper in vegetable oils. IEEE Electr. Insul. Mag. 32 (6): 29–35.

16 16 Xu, Y., Qian, S., Liu, Q., and Wang, Z. (2014). Oxidation stability assessment of a vegetable transformer oil under thermal aging. IEEE Trans. Dielectr. Electr. Insul. 21 (2): 683–692.

17 17 Carcedo, J., Fernández, I., Ortiz, A. et al. (2015). Aging assessment of dielectric vegetable oils. IEEE Electr. Insul. Mag. 31 (6): 13–21.

18 18 Perkasa, C.Y., Lelekakis, N., Wijaya, J., and Martin, D. (2012). Investigating bubble formation in vegetable and mineral oil impregnated transformer paper insulation systems. In Universities Power Engineering Conference (AUPEC), pp. 1–5.

19 19 Rapp, K.J., Corkran, J., McShane, C.P., and Prevost, T.A. (2009). Lightning impulse testing of natural ester fluid gaps and insulation interfaces. IEEE Trans. Dielectr. Electr. Insul. 16 (6): 1595–1603.

20 20 Nor, S.F.M., Azis, N., Jasni, J. et al. (2017). Investigation on the electrical properties of palm oil and coconut oil based TiO2 nanofluids. IEEE Trans. Dielectr. Electr. Insul. 24 (6): 3432–3442.

21 21 Li, J., Zhang, Z., Grzybowski, S., and Zahn, M. (2012). A new mathematical model of moisture equilibrium in mineral and vegetable oil‐paper insulation. IEEE Trans. Dielectr. Electr. Insul. 19 (5): 1615–1622.

22 22 Perrier, C., Marugan, M., and Beroual, A. (2012). DGA comparison between ester and mineral oils. IEEE Trans. Dielectr. Electr. Insul. 19 (5): 1609–1614.

23 23 Jovalekic, M., Vukovic, D., and Tenbohlen, S. (2011). Dissolved gas analysis of alternative dielectric fluids. In IEEE International Conference on Dielectric Liquids (ICDL), pp. 2–5.

24 24 Wang, Z., Yi, X., Huang, J. et al. (2012). Fault gas generation in natural‐ester fluid under localized thermal faults. IEEE Electr. Insul. Mag. 28 (6): 45–56.

25 25 Martin, D., Lelekakis, N., and Davydov, V. (2010). Preliminary results for dissolved gas transformer. IEEE Electr. Insul. Mag. 26 (5): 41–48.

26 26 Maharana, M., Nayak, S.K., and Sahoo, N. (2018). Karanji oil as a potential dielectrics liquid for transformer. IEEE Trans. Dielectr. Electr. Insul. 25 (5): 1871–1879.

27 27 McShane, C.P. (2002). Vegetable‐oil‐based dielectric coolant. IEEE Ind. Appl. Mag. 8 (3): 34–41.

28 28 Bremmer, B.J. and Larry, P. (2008). Biobased lubricants market study, United Soybean Board.

29 29 Azmi, K., Ahmad, A., and Kamarol, M. (2015). Study of dielectric properties of a potential RBD palm oil and RBD soybean oil mixture as insulating liquid in transformer. J. Electr. Eng. Technol. 10 (5): 2105–2119.

30 30 Dušica, I.S., Jovanka, L.D., and Slavica, S.A. (2010). Fatty acid composition of various soybean products. Food Feed Res. 2: 65–70.

31 31 Cannon, G.S. and Honary, L.A.T. (2000). Soybean based transformer oil and transmission line fluid. US 6159913A.

32 32 Egbuna, S.O., Ude, O.C., and Ude, C.N. (2016). Suitability of soybean seed oil as transformer oil. Int. J. Eng. Sci. Res. Technol. 5 (10): 105–112.

33 33 Masarakall, V.H., Sikdar, D.C., and Madalageri, S.B. (2015). Development of new dielectric liquid from Pongamia oil as alternative for transformer oil. Int. J. Tech. Res. Appl. 3: 304–309.

34 34 Bobade, S.N. and Khyade, V.B. (2012). Detail study on the properties of Pongamia pinnata (Karanja) for the production of biofuel. Res. J. Chem. Sci. 2 (7): 16–20.

35 35 Berchmans, H.J. and Hirata, S. (2008). Biodiesel production from crude Jatropha curcas seed oil with a high content of free fatty acids. Bioresour. Technol. 99: 1716–1721.

36 36 Sitorus, H.B.H., Setiabudy, R., Bismo, S., and Beroual, A. (2018). Jatropha curcas methyl ester oil obtaining as vegetable insulating oil. IEEE Trans. Dielectr. Electr. Insul. 23 (4): 2021–2028.

37 37 Zamiri, R., Zakaria, A., Ahangar, H.A. et al. (2010). Fabrication of silver nanoparticles dispersed in palm oil using a laser. Int. J. Mol. Sci. 11 (11): 4764–4770.

38 38 Rajab, A., Sulaeman, A., Sudirham, S., and Suwarno (2011). A comparison of dielectric properties of palm oil with mineral and synthetic types insulating liquid under temperature variation. ITB J. Eng. Sci. 43 (3): 191–208.

39 39 Abdelmalik, A.A. (2014). Chemically modified palm kernel oil ester: a possible sustainable alternative insulating fluid. Sustain. Mater. Technol. 1–2: 42–51.

40 40 Suwarno, F., Stitinjak, S.I., and Imsak, L. (2003). Study on characteristic of palm oil and it’s derivative as liquid insulating materials. In 7th International Conference on Properties and Applications of Dielectric Materials, June 1–5, Nagoya, pp. 495–498.

41 41 Abdullah, U.U., Bashi, S.M., Yunus, R., and Mohibullah, N.A. (2004). The potentials of palm oil as a dielectric fluid. In IEEE National Power & Energy Conference.

42 42 Aditama, S. (2005). Dielectric properties of palm oils as liquid insulating materials: effects of fat content. IEEE Electr. Insul. Mater. 1: 91–94.

43 43 Azis, N., Jasni, J., Kadir, M.Z.A.A., and Mohtar, M.N. (2014). Suitability of palm based oil as dielectric insulating fluid in Transformers. J. Electr. Eng. Technol. 9 (2): 662–669.

44 44 Ghani, S.A., Muhamad, N.A., Chairul, I.S., and Jamri, N. (2016). A study of moisture effects on the breakdown voltage and spectral characteristics of mineral and palm oil‐based insulation oils. ARPN J. Eng. Appl. Sci. 11 (8): 5012–5020.

45 45 Xiaohu Li, Jian Li, Caixin Sun (2006). Properties of transgenic rapeseed oil based dielectric liquid. In 2006 IEEE Southeast Conference, Memphis, USA.

46 46 Sun, C., Li, J., Li, X., and Grzybowski, S. (2006). Electric properties of vegetable oil‐based dielectric liquid and lifetime estimation of the oil paper insulation. In 2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 680–683.

47 47 Baruah, N., Maharana, M., and Nayak, S.K. (2019). Performance analysis of vegetable oil based nanofluids used in transformers. IET Sci. Meas. Technol. 13 (7): 995–1002.

48 48 Standard Specification for Natural (vegetable oil) Ester Fluids Used in Electrical Apparatus, ASTM D 6871, 2017.

49 49 Standard Test Method for Determination of Free Fatty Acids Contained in Animal, Marine, and Vegetable Fats and Oils Used in Fat Liquors and Stuffing Compounds, ASTM D 5555, 2017.

50 50 Nabi, M.N., Hoque, S.M.N., and Akhter, M.S. (2009). Karanja (Pongamia pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Process. Technol. 90: 1080–1086.

51 51 Musa, I.A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 25: 21–31.

52 52 Muhamad, N.A., Phung, B.T., and Blackburn, T.R. (2011). Dissolved gas analysis for common transformer faults in soy seed‐based oil. IET Electr. Power Appl. 5 (1): 133–142.

53 53 Toudja, T., Moulai, H., Nacer, A. et al. (2014). Moisture and electrical discharges effect on naphthenic mineral oil properties. IET Sci. Meas. Technol. 8 (6): 588–594.

54 54 Bertrand, Y. and Hoang, L.C. (2004). Vegetable oils as substitute for mineral insulating oils in medium‐voltage equipments. CIGRE Session: 1–6.

55 55 Cygan, S. and Laghari, J.R. (1987). Dependence of the electric strength on thickness, area and the volume of polypropylene. IEEE Trans. Electr. Insul. 22 (6): 835–837.

56 56 Lelekakis, N., Martin, D., and Wijaya, J. (2012). Ageing rate of paper insulation used in power transformers part 2: oil/paper system with medium and high oxygen concentration. IEEE Trans. Dielec. Electr. Insul. 19: 2009–2018.

57 57 IEEE guide for acceptance and maintenance of insulating oil in equipment, C57.106‐(2002) Institute of Electrical and Electronics Engineers, Piscataway, 2002.

58 58 Lewand, L. (2001). Laboratory evaluation of several synthetic and agricultural‐based dielectric liquids. In Proceedings of the 86th Annual International Conference of Doble Clients, Doble Engineering Company, Watertown, MA, USA.

59 59 Lewand, L.R. (2002). Report on the role of corrosive sulfur in transformers and transformer oil. Doble Company.

60 60 Rapp, K., Lemm, A., Orozco, L., and C. McShane (2008). Corrosive sulfur phenomena mitigation by using natural ester dielectric fluids‐field Experience in Latin America. In Transmission and Distribution Conference and Exposition: Latin America, pp. 1–6.

61 61 Ashraful, A.M., Masjuki, H.H., Kalam, M.A. et al. (2014). Study of the effect of storage time on the oxidation and thermal stability of various biodiesels and their blends. Energy Fuel 28 (2): 1081–1089.

62 62 Obadiah, A., Kannan, R., Ramasubbu, A., and Kumar, S.V. (2012). Studies on the effect of antioxidants on the long‐term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process. Technol. 99: 56–63.

63 63 Martin, D., Wang, Z.D., Darwin, A.W., and James, I. (2006). A comparative study of the chemical stability of esters for use in large power transformers. In Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 493–496.

64 64 Li, N., Mao, G., and Shi, X. (2017). Advances in the research of polymeric pour point depressant for waxy crude oil. J. Disp. Sci. Tech. 38: 1–7.

65 65 Classification of insulating liquids according to fire point and net calorific value, EN 61100:1992, 1992‐07‐15.

66 66 Dong, L. and Johnson, D. (2003). Surface tension of charge‐stabilized colloidal suspensions at the water‐air interface. Langmuir 19: 10205–10209.

67 67 Maharana, M., Baruah, N., and Nayak, S.K. (2018). Effect of oxidative ageing on the thermophysical and electrical properties of the nanofluid with statistical analysis of AC breakdown voltage. IET Sci. Meas. Technol. 12 (8): 1074–1081.

68 68 Mazzaro, M., De Bartolomeo, D., Calcara, L. et al. (2017). Power transformer fire and environmental risk reduction by using natural esters. In IEEE Int. Conf. Dielectr. Liquids (ICDL), pp. 1–4.

69 69 Tenbohlen, S. and Koch, M. (2010). Aging performance and moisture solubility of vegetable oils for power transformers. IEEE Trans. Power Deliv. 25: 825–830.

70 70 Fox, N.J. and Stachowiak, G.W. (2007). Vegetable oil‐based lubricants – a review of oxidation. Tribol. Int. 40 (7): 1035–1046.

71 71 Ciuriuc, A., Vihacencu, M.S., Dumitran, L.M., and Notingher, P.V. (2012). Comparative study on power transformers vegetable and mineral oil ageing. In International Conference on Applied and Theoretical Electricity, pp. 1–6.

72 72 Rooney, D. and Weatherley, L.R. (2001). The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid–liquid reactor. J. Process Biochem. 36: 947–953.

73 73 Baruah, N., Dey, S.S., and Nayak, S.K. (2020). Evaluation of dissolved gas analysis and long‐term performance of non‐edible natural ester. IEEE Trans. Dielectr. Electr. Insul. 27 (5): 1561–1569.

74 74 Gomez, N.A., Abonia, R., Cadavid, H., and Vargas, I.H. (2011). Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers. J. Braz. Chem. Soc. 22 (12): 2292–2303.

75 75 Duval, M. (Dec. 2008). The Duval Triangle for load tap changers, non‐mineral oils and low temperature faults in transformers. IEEE Electr. Insul. Mag. 24 (6): 22–29.

76 76 Duval, M. (Jun. 2002). A review of faults detectable by gas‐in‐oil analysis in transformer. IEEE Electr. Insul. Mag. 18 (3): 8–17.

77 77 Dai, J. and Wang, Z.D. (2008). A comparison of the impregnation of cellulose insulation by ester and mineral oil. IEEE Trans. Dielectr. Electr. Insul. 15 (2): 374–381.

Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems

Подняться наверх