Читать книгу Polar Organometallic Reagents - Группа авторов - Страница 28

References

Оглавление

1 1 Schlosser, M. (2005). Angew. Chem. Int. Ed. 44: 376–393.

2 2 Boudier, A., Bromm, L.O., Lotz, M., and Knochel, P. (2000). Angew. Chem. Int. Ed. 39: 4414–4435.

3 3 Knochel, P. and Jones, P. (1998). Organozinc Reagents. Oxford University Press.

4 4 Gschwend, H.W. and Rodriguez, H.R. (1979). Org. React. 26: 1–360.

5 5 Beak, P. and Snieckus, V. (1982). Acc. Chem. Res. 15: 306–312.

6 6 Snieckus, V. (1990). Chem. Rev. 90: 879–933.

7 7 Gant, T.G. and Meyers, A.I. (1994). Tetrahedron 50: 2297–2360.

8 8 Schlosser, M., (2002). Organometallics in Synthesis, 2nd ed. (Ed.: M. Schlosser), Chapter 1. New York: Wiley.

9 9 Clayden, J. (2002). Organolithiums: Selectivity for Synthesis. Oxford: Pergamon.

10 10 Gilman, H. and Bebb, R.L. (1939). J. Am. Chem. Soc. 61: 109–112.

11 11 Wittig, G., Pieper, G., and Fuhrmann, G. (1940). Ber. Dtsch. Chem. Ges. B 73: 1193–1197.

12 12 Upton, C. and Beak, P. (1975). J. Org. Chem. 40: 1094–1098.

13 13 Krizan, T. D., Martin, J. C. (1983). J. Am. Chem. Soc. 105, 6155–6157.

14 14 Caron, S., Hawkins, J. M. (1998). J. Org. Chem. 63, 2054–2055.

15 15 Wheatley, A.E.H. (2003). Eur. J. Inorg. Chem.: 3291–3303.

16 16 Clayden, J., Davies, R.P., Hendy, M.A. et al. (2001). Angew. Chem. Int. Ed. 40: 1238–1240.

17 17 Clayden, J., Frampton, C.S., McCarthy, C., and Westlund, N. (1999). Tetrahedron 55: 14161–14184.

18 18 Beak, P., Kerrick, S.T., and Gallagher, D.J. (1993). J. Am. Chem. Soc. 115: 10628–10636.

19 19 Bowles, P., Clayden, J., Helliwell, M. et al. (1997). J. Chem. Soc., Perkin Trans. 1: 2607–2616.

20 20 Armstrong, D.R., Boss, S.R., Clayden, J. et al. (2004). Angew. Chem. Int. Ed. 43: 2135–2138.

21 21 Wheatley, A.E.H., Clayden, J., Hillier, I.H. et al. (2012). Beilstein J. Org. Chem. 8: 50–60.

22 22 Armstrong, D.R., Clayden, J., Haigh, R. et al. (2003). Chem. Commun.: 1694–1695.

23 23 Clayden, J., Stimson, C.C., Keenan, M., and Wheatley, A.E.H. (2004). Chem. Commun.: 228–229.

24 24 Campbell Smith, A., Donnard, M., Haywood, J. et al. (2011). Chem. Eur. J. 17: 8078–8084.

25 25 Fries, K. and Finck, G. (1908). Chem. Ber. 41: 4271–4284.

26 26 MacNeil, S.L., Wilson, B.J., and Snieckus, V. (2006). Org. Lett. 8: 1133–1136.

27 27 Singh, K.J. and Collum, D.B. (2006). J. Am. Chem. Soc. 128: 13753–13760.

28 28 Jastrzebski, J.T.B.H., Arink, A.M., Kleijn, H. et al. (2013). J. Am. Chem. Soc. 135: 13371–13378.

29 29 Eaton, P.E., Lee, C.‐H., and Xiong, Y. (1989). J. Am. Chem. Soc. 111: 8016–8018.

30 30 Kondo, Y., Yoshida, A., and Sakamoto, T. (1996). J. Chem. Soc., Perkin Trans. 1: 1331–2332.

31 31 Shilai, M., Kondo, Y., and Sakamoto, T. (2001). J. Chem. Soc., Perkin Trans. 1: 442–444.

32 32 Schlecker, W., Huth, A., Ottow, E., and Mulzer, J. (1995). J. Org. Chem. 60: 8414–8416.

33 33 Haag, B., Mosrin, M., Ila, H. et al. (2011). Angew. Chem. Int. Ed. 50: 9794–9824.

34 34 Sakamoto, S., Imamoto, T., and Yamaguchi, K. (2001). Org. Lett. 3: 1793–1795.

35 35 Yang, K.‐C., Chang, C.‐C., Huang, J.‐Y. et al. (2002). J. Organomet. Chem. 648: 176–187.

36 36 Kawachi, A., Nagae, S., Onoue, Y. et al. (2011). Chem. Eur. J. 17: 8005–8008.

37 37 Davin, L., McLellan, R., Hernán‐Gómez, A. et al. (2017). Chem. Commun. 53: 3653–3656.

38 38 Bakewell, C., White, A.J.P., and Crimmin, M.R. (2016). J. Am. Chem. Soc. 138: 12763–12766.

39 39 Bakewell, C., Ward, B.J., White, A.J.P., and Crimmin, M.R. (2018). Chem. Sci. 9: 2348–2356.

40 40 Davin, L., McLellan, R., Kennedy, A.R., and Hevia, E. (2017). Chem. Commun. 53: 11650–11653.

41 41 Caubère, P. (1993). Chem. Rev. 93: 2317–2334.

42 42 Lochmann, L., Pospíšil, J., and Lím, D. (1966). Tetrahedron Lett. 2: 257–262.

43 43 Schlosser, M. (1967). J. Organomet. Chem. 8: 9–16.

44 44 Schlosser, M. and Strunk, S. (1984). Tetrahedron Lett. 25: 741–744.

45 45 Schlosser, M., Chi, J.H., and Takagishi, S. (1990). Tetrahedron 46: 5633–5648.

46 46 Katsoulos, G., Takagishi, S., and Schlosser, M. (1991). Synlett: 731–732.

47 47 Schlosser, M. (1988). Pure Appl. Chem. 60: 1627–1634.

48 48 Lochmann, L. (2000). Eur. J. Inorg. Chem.: 1115–1126.

49 49 Schlosser, M. (2005). Angew. Chem.Int. Ed. 44: 376–393.

50 50 Schlosser, M., Choi, J.H., and Takagishi, S. (1990). Tetrahedron 46: 5633–5648.

51 51 McGarrity, J.F. and Ogle, C.A. (1985). J. Am. Chem. Soc. 107: 1805–1810.

52 52 Marsch, M., Harms, K., Lochmann, L., and Boche, G. (1990). Angew. Chem. Int. Ed. Engl. 29: 308–309.

53 53 e.g. Clegg, W., Drummond, A. M., Liddle, S. T., Mulvey, R. E., Roberston, A. (1999). Chem. Commun. 1569–1570.

54 54 Mackenzie, F.M., Mulvey, R.E., Clegg, W., and Horsburgh, L. (1996). J. Am. Chem. Soc. 118: 4721–4722.

55 55 Kennedy, A.R., MacLellan, J.G., and Mulvey, R.E. (2001). Angew. Chem. Int. Ed. 40: 3245–3247.

56 56 Wei, X., Dong, Q., Tong, H. et al. (2008). Angew. Chem. Int. Ed. 47: 3976–3978.

57 57 Lochmann, L. and Lím, D. (1971). J. Organomet. Chem. 28: 153–158.

58 58 Pi, R., Bauer, W., Brix, B. et al. (1986). J. Organomet. Chem. 306: C1–C4.

59 59 Harder, S. and Streitwieser, A. (1993). Angew. Chem. Int. Ed. Engl. 32: 1066–1068.

60 60 Unkelbach, C., O’Shea, D.F., and Strohmann, C. (2014). Angew. Chem. Int. Ed. 53: 553–556.

61 61 Gau, G. (1976). J. Organomet. Chem. 121: 1–6.

62 62 Benrath, P., Kaiser, M., Limbach, T. et al. (2016). Angew. Chem. Int. Ed. 55: 10886–10889.

63 63 Jennewein, B., Kimpel, S., Thalheim, D., and Klett, J. (2018). Chem. Eur. J. 24: 7605–7609.

64 64 Mulvey, R.E., Mongin, F., Uchiyama, M., and Kondo, Y. (2007). Angew. Chem. Int. Ed. 46: 3802–3824.

65 65 Krasovskiy, A., Krasovskaya, V., and Knochel, P. (2006). Angew. Chem., Int. Ed. 45: 2958–2961.

66 66 Mosrin, M. and Knochel, P. (2008). Org. Lett. 10: 2497–2500.

67 67 Lin, W., Baron, O., and Knochel, P. (2006). Org. Lett. 8: 5673–5676.

68 68 Clososki, G.C., Rohbogner, C.J., and Knochel, P. (2007). Angew. Chem. Int. Ed. 46: 7681–7684.

69 69 Forbes, G.C., Kennedy, A.R., Mulvey, R.E. et al. (2001). J. Chem. Soc., Dalton Trans.: 1477–1484.

70 70 Hevia, E., Gallagher, D.J., Kennedy, A.R. et al. (2004). Chem. Commun.: 2422–2423.

71 71 Graham, D.V., Hevia, E., Kennedy, A.R. et al. (2006). Chem. Commun.: 417–419.

72 72 Blair, V.L., Kennedy, A.R., Klett, J., and Mulvey, R.E. (2008). Chem. Commun.: 5426–5428.

73 73 García‐Álvarez, P., Graham, D.V., Hevia, E. et al. (2008). Angew. Chem. Int. Ed. 47: 8079–8081.

74 74 Armstrong, D.R., García‐Álvarez, P., Kennedy, A.R. et al. (2010). Angew. Chem. Int. Ed. 49: 3185–3188.

75 75 Li, D., Keresztes, I., Hopson, R., Williard, P. G. (2008). Acc. Chem. Res. 41, 270–280.

76 76 Guang, J., Hopson, R., Williard, P. G. (2015). J. Org. Chem. 80, 9102–9107.

77 77 Neufeld, R. and Stalke, D. (2016). Chem. Eur. J. 22: 12624–12628.

78 78 Tuckmantel, W., Oshima, K., and Nozaki, H. (1986). Chem. Ber. 119: 1581–1593.

79 79 Isobe, M., Kondo, S., Nagasawa, N., and Goto, T. (1977). Chem. Lett.: 679–682.

80 80 Kondo, Y., Takazawa, N., Yamazaki, C., and Sakamoto, T. (1994). J. Org. Chem. 59: 4717–4718.

81 81 Kondo, Y., Takazawa, N., Yoshida, A., and Sakamoto, T. (1995). J. Chem. Soc., Perkin Trans. 1: 1207–1208.

82 82 Kondo, Y., Morey, J.V., Morgan, J.C. et al. (2007). J. Am. Chem. Soc. 129: 12734–12738.

83 83 Weiss, E. and Wolfrum, R. (1968). Chem. Ber. 101: 35–40.

84 84 Fröhlich, H.‐O., Kosan, B., Müller, B., and Hiller, W. (1992). J. Organomet. Chem. 441: 177–184.

85 85 Fröhlich, H.‐O., Kosan, B., Undeutsch, B., and Görls, H. (1994). J. Organomet. Chem. 472: 1–14.

86 86 Armstrong, D.R., Dougan, C., Graham, D.V. et al. (2008). Organometallics 27: 6063–6070.

87 87 Uchiyama, M., Koike, M., Kameda, M. et al. (1996). J. Am. Chem. Soc. 118: 8733–8734.

88 88 Uchiyama, M., Kameda, M., Mishima, O. et al. (1998). J. Am. Chem. Soc. 120: 4934–4946.

89 89 Kondo, Y., Fujinami, M., Uchiyama, M., and Sakamoto, T. (1997). J. Chem. Soc., Perkin Trans. 1: 799–800.

90 90 Westerhausen, M., Rademacher, B., Schwarz, W., and Anorg, Z. (1993). Allg. Chem. 619: 675–689.

91 91 Wyrwa, R., Fröhlich, H.‐O., and Görls, H. (1996). Organometallics 15: 2833–2835.

92 92 Rijnberg, E., Jastrzebski, J.T.B.H., Boersma, J. et al. (1997). Organometallics 16: 2239–2245.

93 93 Armstrong, D.R., Kennedy, A.R., Mulvey, R.E. et al. (2012). Chem. Sci. 3: 2700–2707.

94 94 Armstrong, D.R., Crosbie, E., Hevia, E. et al. (2014). Chem. Sci. 5: 3031–3045.

95 95 Armstrong, D.R., Emerson, H.S., Hernán‐Gómez, A. et al. (2014). Dalton Trans. 43: 14229–14238.

96 96 Robert, A.J., Kennedy, A.R., McLellan, R. et al. (2016). Eur. J. Inorg. Chem.: 4752–4760.

97 97 Westerhausen, M., Wieneke, M., Ponikwar, W. et al. (1998). Organometallics 17: 1438–1441.

98 98 Kondo, Y., Matsudaira, T., Sato, J. et al. (1996). Angew. Chem. Int. Ed. Engl. 35: 736–738.

99 99 Boger, D.L. and Coleman, R.S. (1988). J. Am. Chem. Soc. 110: 1321–1323.

100 100 Boger, D.L. and Coleman, R.S. (1988). J. Am. Chem. Soc. 110: 4796–4807.

101 101 Kelly, R.C., Gehhard, I., Wicnienski, N. et al. (1987). J. Am. Chem. Soc. 109: 6837–6838.

102 102 Boger, D.L. and Machiya, K. (1992). J. Am. Chem. Soc. 114: 10056–10058.

103 103 Boger, D.L., Machiya, K., Hertog, D.L. et al. (1993). J. Am. Chem. Soc. 115: 9025–9036.

104 104 Muratake, H., Abe, I., and Natsume, M. (1994). Tetrahedron Lett. 35: 2573–2576.

105 105 Wehmeyer, G.W. and Rieke, R.D. (1987). J. Org. Chem. 52: 5056–5057.

106 106 House, H.O., Koepsell, D.G., and Campbell, W.J. (1972). J. Org. Chem 37: 1003–1011.

107 107 Hiyama, T., Yamamoto, H., Nishio, K. et al. (1979). Bull. Chem. Soc. Jpn. 52: 3632–36e37.

108 108 van Koten, G. (2012). Organometallics 31: 7634–7646.

109 109 Jarvis, J.A.J., Pearce, R., and Lappert, M.F. (1977). J. Chem. Soc., Dalton Trans.: 999–1003.

110 110 Noltes, J.G., ten Hoedt, R.W.M., van Koten, G. et al. (1982). J. Organomet. Chem. 225: 365–376.

111 111 Schulte, P., Behrens, U., and Anorg, Z. (2000). Allg. Chem. 626: 1692–1696.

112 112 Geng, W., Wei, J., Zhang, W.‐X., and Xi, Z. (2014). J. Am. Chem. Soc. 136: 610–613.

113 113 Liu, L., Zhu, M., Yu, H.‐T. et al. (2018). Organometallics 37: 845–847.

114 114 Camus, A. and Marsich, N. (1968). J. Organomet. Chem. 14: 441–446.

115 115 Cairncross, A. and Shappard, W. (1971). J. Am. Chem. Soc. 93: 247–248.

116 116 Cairncross, A., Omura, H., and Sheppard, W.A. (1971). J. Am. Chem. Soc. 93: 248–249.

117 117 Sundaraman, A., Lalancette, R.A., Zakharov, L.N. et al. (2003). Organometallics 22: 3526–3532.

118 118 van Koten, G., Leusink, A.J., and Noltes, J.G. (1970). J. Chem. Soc. Chem. D, Chem. Commun: 1107–1108.

119 119 Bomparola, R., Davies, R.P., Lal, S., and White, A.J.P. (2012). Organometallics 31: 7877–7883.

120 120 Lang, H., Jacob, A., and Milde, B. (2012). Organometallics 31: 7661–7693.

121 121 Buschbech, R., Low, P.J., and Lang, H. (2011). Coord. Chem. Rev. 255: 241–272.

122 122 Gambarotta, S., Floriani, C., Chiesi‐Villa, A., and Guastini, C. (1983). J. Chem. Soc., Chem. Commun.: 1156–1158.

123 123 Jassen, M., Corsten, M.A., Spek, A.L. et al. (1996). Organometallics 15: 2810–2820.

124 124 Molteni, R., Bertermann, R., Edkins, K., and Steffen, A. (2016). Chem. Commun. 52: 5019–5022.

125 125 Dempsey, D.F. and Girolami, G.S. (1988). Organometallics 7: 1208–1213.

126 126 Jäkle, F. (2007). Dalton Trans.: 2851–2858.

127 127 Gilman, H., Jones, R.G., and Woods, L.A. (1952). J. Org. Chem. 17: 1630–1634.

128 128 Pearson, R.G. and Gregory, C.G. (1976). J. Am. Chem. Soc. 98: 4098–4104.

129 129 Edwards, P.G., Gellert, R.W., Marks, M.W., and Bau, R. (1982). J. Am. Chem. Soc. 104: 2072–2073.

130 130 Khan, S., Edwards, P.G., Yuan, H.S.H., and Bau, R. (1985). J. Am. Chem. Soc. 107: 1682–1684.

131 131 Hope, H., Oram, D., and Power, P. (1984). J. Am. Chem. Soc. 106: 1149–1150.

132 132 Davies, R.P. (2011). Coord. Chem. Rev. 255: 1226–1251.

133 133 Lorenzen, P. and Weiss, E. (1990). Angew. Chem. Int. Ed. Engl. 29: 300–302.

134 134 Olmstead, M.M. and Power, P.P. (1990). J. Am. Chem. Soc. 112: 8008–8014.

135 135 Olmstead, M.M. and Power, P.P. (1989). J. Am. Chem. Soc. 111: 4135–4136.

136 136 Liu, L., Zhu, M., Yu, H.‐T. et al. (2017). J. Am. Chem. Soc. 139: 13688–13691.

137 137 van Koten, G., Jastrzebski, J.T.B.H., Muller, F., and Stam, C.H. (1985). J. Am. Chem. Soc. 107: 697–698.

138 138 Guss, J.M., Mason, R., Søtofte, I. et al. (1972). J. Chem. Soc., Chem. Commun.: 446–447.

139 139 Davies, R.P., Hornaur, S., and White, A.J.P. (2007). Chem. Commun.: 304–306.

140 140 Eaborn, C., Hitchcock, P.B., Smith, J.D., and Sullivan, A.C. (1984). J. Organomet. Chem. 236: c23–c25.

141 141 Olmstead, M.M. and Power, P.P. (1990). Organometallics 9: 1720–1722.

142 142 Hope, H., Olmstead, M.M., Power, P.P. et al. (1985). J. Am. Chem. Soc. 107: 4337–4338.

143 143 John, M., Auel, C., Behrens, C. et al. (2000). Chem. Eur. J. 16: 3060–3068.

144 144 Bertz, S.H., Hardin, R.A., Heavey, T.J., and Ogle, C.A. (2013). Angew. Chem. Int. Ed. 52: 10250–10252.

145 145 Lipshutz, B., Kozlowski, J.A., and Breneman, C. (1985). J. Am. Chem. Soc. 107: 3197–3204.

146 146 Xie, X., Auel, C., Henze, W., and Gschwind, R.M. (2003). J. Am. Chem. Soc. 125: 1595–1601.

147 147 Henze, W., Vyater, A., Krause, N., and Gschwind, R.M. (2005). J. Am. Chem. Soc. 127: 17335–17342.

148 148 Kronenburg, C.M.P., Amijs, C.H.M., Jastrzebski, J.T.B.H. et al. (2002). Organometallics 21: 4662–4671.

149 149 Liphsutz, B.H., Wilhelm, R.S., Kozlowski, J.A., and Parker, D. (1984). J. Org. Chem. 49: 3928–3938.

150 150 Lipshutz, B.H., Wilhelm, R.S., and Kozlowski, J.A. (1984). J. Org. Chem. 49: 3938–3942.

151 151 Boche, G., Bosold, F., Marsch, M., Harms, K. (1998). Angew. Chem. Int. Ed. 37, 1684–1686.

152 152 Hwang, C.‐S., Power, P. P. (1998). J. Am. Chem. Soc. 120, 6409–6410.

153 153 Eaborn, A., El‐Hamruni, S. M., Hill, M. S., Hitchcock, P. B., Smith, J. D. (2002). J. Chem. Soc., Dalton Trans. 3975–3979.

154 154 Bertz, S.H. (1991). J. Am. Chem. Soc. 113: 5470–5471.

155 155 Lipshutz, B.H., Kozlowski, J.A., and Wilhelm, R.S. (1984). J. Org. Chem. 49: 3943–3949.

156 156 Bertz, S.H. (1990). J. Am. Chem. Soc. 112: 4031–4032.

157 157 Stemmler, T., Penner‐Hahn, J. E., Knochel, P J. Am. Chem. Soc. (1993). 115, 348–350.

158 158 Barnhart, T. M., Huang, H., Penner-Hahn, J. E. (1995). J. Org. Chem. 60, 4310–4311.

159 159 Huang, H., Alvarez, K., Lui, Q. et al. (1996). J. Am. Chem. Soc. 118: 8808–8816.

160 160 Snyder, J., Spangler, D., Behling, J., and Rossiter, B. (1994). J. Org. Chem. 59: 2665–2667.

161 161 Snyder, J. and Bertz, S. (1995). J. Org. Chem. 60: 4312–4313.

162 162 Kronenburg, C.M.P., Jastrzebski, J.T.H., Spek, A.L., and van Koten, G. (1998). J. Am. Chem. Soc. 120: 9968–9688.

163 163 Boche, G., Bosold, F., Marsch, M., and Harms, K. (1998). Angew. Chem. Int. Ed. 37: 1684–1686.

164 164 Bertz, S.H., Chopra, A., Eriksson, M. et al. (1999). Chem. Eur. J. 5: 2680–2691.

165 165 Neumeier, N. and Gschwind, R.M. (2014). J. Am. Chem. Soc. 136: 5765–5772.

166 166 Wilson, S.R. and Szarnik, A.W. (1997). Combinatorial Chemistry. John Wiley & Sons.

167 167 Obrecht, D. and Villalgordo, J.M. (1998). Solid‐Supported Combinatorial and Parallel Synthesi of Small‐Molecular‐Weight Compound Libraries. Pergamon.

168 168 Kondo, Y., Komine, T., Fujinami, M. et al. (1999). J. Comb. Chem. 1: 123–126.

169 169 Boymond, L., Rottländer, M., Cahiez, G., and Knochel, P. (1998). Angew. Chem. Int. Ed. 37: 1701–1703.

170 170 Gregory, K., Schleyer, P.v.R., and Snaith, R. (1991). Adv. Inorg. Chem. 37: 47–142.

171 171 Lappert, M., Protchenko, A., Power, P., and Seeber, A. (2008). Metal Amide Chemistry. Chichester: John Wiley & Sons, Ltd.

172 172 Armstrong, D. R., Davies, J. E., Davies, R. P., Raithby, P. R., Snaith, R., Wheatley, A. E. H. (1999). New J. Chem. 23, 35–41.

173 173 Armstrong, D. R., Davies, R. P., Raithby, P. R., Snaith, R., Wheatley, A. E. H. (1999). New J. Chem. 23, 499–507.

174 174 Kondo, Y., Shilai, M., Uchiyama, M., and Sakamoto, T. (1999). J. Am. Chem. Soc. 121: 3539–3540.

175 175 Imahori, T., Uchiyama, M., Sakamoto, T., and Kondo, Y. (2001). Chem. Commun.: 2450–2451.

176 176 Clarke, A.J., McNamara, S., and Meth‐Cohn, O. (1974). Tetrahedron Lett.: 2373–2376.

177 177 Clegg, W., Dale, S.H., Hevia, E. et al. (2006). Angew. Chem. Int. Ed. 45: 2370–2374.

178 178 Andrikopoulos, P.C., Armstrong, D.R., Barley, H.R.L. et al. (2005). J. Am. Chem. Soc. 127: 6184–6185.

179 179 Conway, B., Graham, D.V., Hevia, E. et al. (2008). Chem. Commun.: 2638–2640.

180 180 Clegg, W., Conway, B., Graham, D.V. et al. (2009). Chem. Eur. J. 15: 7074–7082.

181 181 Clegg, W., Conway, B., Hevia, E. et al. (2009). J. Am. Chem. Soc. 131: 2375–2384.

182 182 Armstrong, D.R., Blair, V.L., Clegg, W. et al. (2010). J. Am. Chem. Soc. 132: 9480–9487.

183 183 Armstrong, D.R., Clegg, W., Dale, S.H. et al. (2006). Angew. Chem. Int. Ed. 45: 3775–3778.

184 184 Armstrong, D.R., Balloch, L., Hevia, E. et al. (2011). Beilstein J. Org. Chem. 7: 1234–1248.

185 185 Clegg, W., Dale, S.H., Harrington, R.W. et al. (2006). Angew. Chem. Int. Ed. 45: 2374–2377.

186 186 Clegg, W., Conway, B., Hevia, E. et al. (2009). J. Am. Chem. Soc. 131: 2375–2384.

187 187 Kondo, Y., Morey, J.V., Morgan, J.M. et al. (2007). J. Am. Chem. Soc. 129: 12734–12738.

188 188 Clegg, W., Dale, S.H., Hevia, E. et al. (2008). Angew. Chem. Int. Ed. 47: 731–734.

189 189 García, F., McPartlin, M., Morey, J.V. et al. (2008). Eur. J. Org. Chem.: 644–647.

190 190 Balloch, L., Kennedy, A.R., Klett, J. et al. (2010). Chem. Commun. 46: 2319–2321.

191 191 Balloch, L., Kennedy, A.R., Mulvey, R.E. et al. (2011). Organometallics 30: 145–152.

192 192 Seggio, A., Chevallier, F., Vaultier, M., and Mongin, F. (2007). J. Org. Chem. 72: 6602–6605.

193 193 Seggio, A., Lannou, M.‐I., Chevallier, F. et al. (2007). Chem. Eur. J. 13: 9982–9989.

194 194 L’Helgoual’ch, J.‐M., Seggio, A., Chevallier, F. et al. (2008). J. Org. Chem. 73: 177–183.

195 195 Jones, P.R. and Desio, P.J. (1978). Chem. Rev. 78: 491–516.

196 196 O’Brien, P. and Malik, M.A. (2004). Sci. Synth. 3: 91–131.

197 197 Wittig, G., Meyer, F.J., and Lange, G. (1951). Liebigs Ann. Chem. 571: 167–201.

198 198 L’Helgoual’ch, J.‐M., Bentabed‐Ababsa, G., Chevallier, F. et al. (2008). Chem. Commun.: 5375–5377.

199 199 Snégaroff, K., L’Helgoual’ch, J.‐M., Bentabed‐Ababsa, G. et al. (2009). Chem. Eur. J. 15: 10280–10290.

200 200 Mole, T., Jeffrey, E. A., (1972). Organoaluminum Compounds, Elsevier: Amsterdam.

201 201 Negishi, E., (1976). J. Organomet. Chem. Libr. 1, 93–125.

202 202 Saito, S., (2004). Aluminum in Organic Synthesis. In Main Group Metals in Organic Synthesis, Vol. 1, (ed. H. Yamamoto, K. Oshima), Chap. 6, Wiley‐VCH: Weinheim.

203 203 Eisch, J. J., (1982). Comprehensive Organometallic Chemistry, Vol. 6, (ed. G. Wilkinson, F. G. A. Stone, E. W. Abel), Chap. 6, Pergamon Press: Oxford.

204 204 Uchiyama, M., Naka, H., Matsumoto, Y., and Ohwada, T. (2004). J. Am. Chem. Soc. 126: 10526–10527.

205 205 García‐Álvarez, J., Graham, D.V., Kennedy, A.R. et al. (2006). Chem. Commun.: 3208–3210.

206 206 Naka, H., Uchiyama, M., Matsumoto, Y. et al. (2007). J. Am. Chem. Soc. 129: 1921–1930.

207 207 Mulvey, R.E., Armstrong, D.R., Conway, B. et al. (2011). Inorg. Chem. 50: 12241–12251.

208 208 Conway, B., García‐Álvarez, P., Kennedy, A.R. et al. (2010). New J. Chem. 34: 1707–1712.

209 209 Naka, H., Morey, J.V., Haywood, J. et al. (2008). J. Am. Chem. Soc. 130: 16193–16200.

210 210 Conway, B., Crosbie, E., Kennedy, A.R. et al. (2012). Chem. Commun. 48: 4674–4676.

211 211 Rossiter, B.E. and Swingle, N.M. (1992). Chem. Rev. 92: 771–806.

212 212 Yamanaka, M. and Nakamura, E. (2005). J. Am. Chem. Soc. 127: 4697–4706.

213 213 Usui, S., Hashimoto, Y., Morey, J.V. et al. (2007). J. Am. Chem. Soc. 129: 15102–15103.

214 214 Tezuka, N., Shimojo, K., Hirano, K. et al. (2016). J. Am. Chem. Soc. 138: 9166–9171.

215 215 Nguyen, T.T., Marquise, N., Chevallier, F., and Mongin, F. (2011). Chem. Eur. J. 17: 10405–10416.

216 216 Krause, N. and Gerold, A. (1997). Angew. Chem. Int. Ed. Engl. 36: 186–204.

217 217 Bertz, S.H. and Dabbagh, G. (1982). J. Chem. Soc., Chem. Commun.: 1030–1032.

218 218 Harford, P.J., Peel, A.J., Chevallier, F. et al. (2014). Dalton Trans. 43: 14181–14203.

219 219 Davies, R.P., Hornauer, S., and Hitchcock, P.B. (2007). Angew. Chem. Int. Ed. 46: 5191–5194.

220 220 Haywood, J., Morey, J.V., Wheatley, A.E.H. et al. (2009). Organometallics 28: 38–41.

221 221 Komagawa, S., Usui, S., Haywood, J. et al. (2012). Angew. Chem. Int. Ed. 51: 12081–12085.

222 222 Marquise, N., Harford, P.J., Chevallier, F. et al. (2013). Tetrahedron Lett. 54: 3154–3157.

223 223 Marquise, N., Harford, P.J., Chevallier, F. et al. (2013). Tetrahedron 69: 10123–10133.

224 224 Armstrong, D.R., Garden, J.A., Kennedy, A.R. et al. (2013). Chem. Eur. J. 19: 13492–13503.

225 225 Harford, P.J., Peel, A.J., Taylor, J.P. et al. (2014). Chem. Eur. J. 20: 3908–3912.

226 226 Peel, A.J., Slaughter, J., and Wheatley, A.E.H. (2016). J. Organomet. Chem. 812: 259–267.

227 227 Kronenburg, C.M.P., Jastrzebski, J.T.H., Boersma, J. et al. (2002). J. Am. Chem. Soc. 124: 11675–11683.

228 228 Peel, A.J., Hedidi, M., Bentabed‐Ababsa, G. et al. (2016). Dalton Trans. 45: 6094–6104.

229 229 Peel, A.J., Ackroyd, R., and Wheatley, A.E.H. (2017). Chem. Sci. 8: 4904–4916.

230 230 Peel, A.J., Tezuka, N., D’Rozario, J.M. et al. (2019). Chem. Sci. 10: 3385–3400.

231 231 Yoshikai, N., Nakamura, E. (2012). Chem. Rev. 112, 2339–2372.

232 232 Shimizu, Y., Kanai, M. (2014). Tetrahedron Lett. 55, 3727–3737.

233 233 Yoshida, H. (2016). ACS Catal. 6, 1799–1811.

234 234 Vanýsek, P., (2005). in CRC Handbook of Chemistry and Physics, (Ed. D. W. H. Lide), (8‐20)–(8‐29), 89th Edn. Boca Raton: CRC Press.

235 235 Rieke, R.D., Stack, D.E., Dawson, B.T., and Wu, T.‐C. (1993). J. Org. Chem. 58: 2483–2491.

236 236 Yoshida, H., Kageyuki, I., and Takaki, K. (2014). Org. Lett. 16: 3512–3515.

237 237 Tyrra, W. and Naumann, D. (2004). J. Fluor. Chem. 125: 823–830.

238 238 Kleijn, H., Tigchelaar, M., Meijer, J., and Vermeer, P. (1981). Recl. Des Trav. Chim. Des Pays‐Bas 100: 337–341.

239 239 Martínez de Salinas, S., Mudarra, Á.L., Benet‐Buchholz, J. et al. (2018). Chem. Eur. J. 24: 11895–11898.

240 240 Joven‐Sancho, D., Baya, M., Martín, A., and Menjón, B. (2018). Chem. Eur. J. 24: 13098–13101.

241 241 Weske, S., Hardin, R.A., Auth, T. et al. (2018). Chem. Commun. 54: 5086–5089.

242 242 Chevallier, F., Mongin, F., Takita, R., and Uchiyama, M. (2015). Arene Chemistry (ed. J. Mortier), 777–812. Hoboken, New Jersey: John Wiley & Sons, Inc.

243 243 Bartoli, G., Dalpozzo, R., and Nardi, M. (2014). Chem. Soc. Rev. 43: 4728–4750.

244 244 Wunderlich, S.H. and Knochel, P. (2007). Angew. Chem. Int. Ed. 46: 7685–7688.

245 245 Tezuka, N., Hirano, K., Peel, A.J. et al. (2020). Chem. Sci. 11: 1855–1861.

246 246 Figuly, G.D. and Martin, J.C. (1980). J. Org. Chem. 45: 3728–3729.

247 247 Muchowski, J.M. and Venuti, M.C. (1980). J. Org. Chem. 45: 4798–4801.

248 248 Du, B.‐X., Quan, Z.‐J., Da, Y.‐X. et al. (2015). Adv. Synth. Catal. 357: 1270–1276.

249 249 Zollinger, H. (ed.) (1994). Diazo Chemistry I. Weinheim: VCH Verlagsgesellschaft mbH.

250 250 Takeda, Y., Okumura, S., and Minakata, S. (2013). Synthesis 45: 1029–1033.

Polar Organometallic Reagents

Подняться наверх