Читать книгу Fluid Mechanics at Interfaces 2 - Группа авторов - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Preface

1 Turbulent Channel Flow to Reτ = 590 in Discrete Mechanics 1.1. Introduction 1.2. Discrete mechanics formulation 1.3. Turbulent flow in channel 1.4. Conclusion 1.5. References

2 Atomization in an Acceleration Field1 2.1. Introduction 2.2. Generation of droplets through vibrations normal to the liquid layer 2.3. Rayleigh–Taylor instability at the crest of an axial wave 2.4. Recent work 2.5. Conclusion 2.6. References

3 Numerical Simulation of Pipes with an Abrupt Contraction Using OpenFOAM 3.1. Introduction 3.2. Modeling an abrupt contraction in a pipe 3.3. Numerical results 3.4. Conclusion and future prospects 3.5. References

4 Vaporization of an Equivalent Pastille 4.1. Introduction 4.2. Equations for the problem 4.3. Linear analysis of the liquid phase 4.4. Some results 4.5. Conclusion 4.6. References

5 Thermal Field of a Continuously-Fed Drop Subjected to HF Perturbations 5.1. Drops in a liquid-propellant rocket engine 5.2. A continuously fed droplet 5.3. Equations of the problem 5.4. Linearized equations 5.5. Linearized equations for small harmonic perturbations 5.6. Thermal field in the drop when neglecting internal convection 5.7. Conclusion 5.8. Appendix 1: Coefficients that come into play in linearized equations 5.9. Appendix 2: Solving the thermal equation 5.10. Appendix 3: The case of the equivalent pastille 5.11. Appendix 4: 2D representation for the spherical drop 5.12. References

10  6 Study of the Three-Dimensional and Non-Stationary Flow in a Rotor of the Savonius Wind Turbine 6.1. Introduction 6.2. Mathematical modeling of the problem 6.3. Numerical resolution 6.4. Validation of the results 6.5. Results and discussion 6.6. Conclusion 6.7. Acknowledgments 6.8. References

11  List of Authors

12  Index

13  Summary of Volume 1

14  End User License Agreement

List of Tables

1 Chapter 1Table 1.1. Curvature in the zone y+ > δn calculated by model-free simulati...

2 Chapter 4Table 4.1. Six types of configuration when there is an exchange coefficient at t...

List of Illustrations

1 Chapter 1Figure 1.1. Discrete geometric structure: a set of primitive planar facets S are...Figure 1.2. Turbulent channel with Reτ = 590; average velocity profiles in reduc...Figure 1.3. (a) Turbulent channel with Reτ = 590 (Denaro et al. 2011), r = f(y+)...Figure 1.4. Turbulent channel with Reτ = 590, results of unit-2 (Denaro et al. 2...Figure 1.5. Turbulent channel with Reτ = 590, comparison between the results of ...Figure 1.6. Turbulent channel with Reτ = 590. Results of the TDM model (dots) co...Figure 1.7. Turbulent channel with Reτ = 590. The reduced turbulent viscosity μd...Figure 1.8. Turbulent channel with Reτ = 590, results from MKM99 (Moser et al. 1...

2 Chapter 2Figure 2.1. (a) Rayleigh–Taylor instability produced by carefully injecting hot,...Figure 2.2. The atomization of a solution of distilled water and 80% glycerin, a...Figure 2.3. Liquid mass excited by ultrasonic oscillation. The Oz axis is orient...Figure 2.4. Stability diagram of a liquid layer subject to forced oscillation: s...Figure 2.5. Diagram of the device used by Ben Rayana, Cartellier and Hopfinger (...Figure 2.6. Study of the crest of the axial wave resulting from a convective Kel...Figure 2.7. Transverse waves with the wavelength λTR ∝ UG −1/4 (UG − UC)−1 (seen...Figure 2.8. Rupture regimes in space for the parameters ReL/We. The lines with c...

3 Chapter 3Figure 3.1. Comparison of the three solvers. For a color version of this figure,...Figure 3.2. (a) Cartesian domain; (b) cylindrical domainFigure 3.3. (a) Relaxed Cartesian mesh; (b) refined Cartesian mesh; (c) relaxed ...Figure 3.4. Boundary and initial conditions IFigure 3.5. Boundary conditions and initial conditions IIFigure 3.6. Upstream and downstream positionsFigure 3.7. Different sections showing the upstream and downstream positions 1, ...Figure 3.8. (a) Mean flow rate over space during the outward movement; (b) mean ...Figure 3.9. (a) Mean flow rate for position 1 during the outward movement; (b) m...Figure 3.10. (a) Mean flow rate for position 1 during the outward movement; (b) ...Figure 3.11. Left: volume contained between the upstream position 1 and downstre...Figure 3.12. Variation of the mass m(Vi, t) over time. For a color version of th...Figure 3.13. (a) Velocity vector field for a relaxed mesh; (b) velocity vector f...Figure 3.14. (a) Contour lines for a relaxed mesh; (b) contour lines for a refin...Figure 3.15. (a) Isosurfaces for a relaxed mesh; (b) isosurfaces for a refined m...Figure 3.16. Calculation cost in minutes. For a color version of this figure, se...Figure 3.17. Calculation cost ratio. For a color version of this figure, see www...Figure 3.18. (a) Mean flow rate for position 1 during an outward movement associ...Figure 3.19. (a) Vector field for a non-refined mesh; (b) vector field for a ref...

4 Chapter 4Figure 4.1. Geometric configuration of a pastille equivalent to a sphere with di...Figure 4.2. Droplet with radius r̄s fed with liquid with a flow rate and the e...Figure 4.3. Influence of the exchange coefficient with the values being identica...Figure 4.4. Influence of the Péclet number (inverse of θ) with the values being ...Figure 4.5. Curves showing the reduced response factor N /α as a function of the...Figure 4.6. Differences between the temperature field in the liquid for two cond...

5 Chapter 5Figure 5.1. Physical phenomena brought into play in a cryogenic, coaxial injecto...Figure 5.2. (a) Packet of drops in combustion in a schematized combustion chambe...Figure 5.3. Spherical drop with adiabatic feeding regime: the influence of θ on ...Figure 5.4. Influence of the Péclet number PeL (inverse of θ) with all other par...Figure 5.5. Pastille with adiabatic feeding regime (h = 0). For a color version ...Figure 5.6. Pastille with isothermal feeding regime (h is infinite). For a color...Figure 5.7. Spherical drop with adiabatic feeding regime: the influence of θ on ...

6 Chapter 6Figure 6.1. Description of a Savonius rotor and the calculation field. For a col...Figure 6.2. Presentation of the three frames used. For a color version of this f...Figure 6.3. Meshes in the blade-to-blade plane and meridian plane. For a color v...Figure 6.4. Meshing on the blades and at the foot, halfway-up and at the head of...Figure 6.5. Dynamic pressure depression in the study by Butaud (top); and that o...Figure 6.6. Isobar and iso-Mach curves for λ = 0.4. For a color version of this ...Figure 6.7. Isobar and iso-Mach curves for λ = 0.6. For a color version of this ...Figure 6.8. Isobar and iso-Mach curves for λ = 0.8. For a color version of this ...Figure 6.9. Isobar and iso-Mach curves for λ = 1.0. For a color version of this ...Figure 6.10. Isobar and iso-Mach curves for λ = 1.2. For a color version of this...Figure 6.11. Isobar and iso-Mach curves for λ = 1.4. For a color version of this...Figure 6.12. Isobar and iso-Mach curves for λ = 1.6. For a color version of this...Figure 6.13. Isobar and iso-Mach curves at t = 0 s and α = 90°. For a color vers...Figure 6.14. Isobar curves at the instant t = 0.927 s, α = 90° after one rotatio...Figure 6.15. Isobar curves at the instant t = 5.677 s, α = 90° after six rotatio...Figure 6.16. Isobar curves at the instant t = 11.35 s, α = 90° after 12 rotation...Figure 6.17. Isobar curves at the instant t = 11.83 s, α = 90° after 13 rotation...Figure 6.18. Isobar curves at the instant t = 11.94 s, α = 180° after 13 more ro...Figure 6.19. Isobar curves at the instant t = 12.06 s, α = 270° after 13 more ro...Figure 6.20. Isobar curves at the instant t = 12.18 s, α = 360° after 13 more ro...Figure 6.21. Isobar curves at the instant t = 12.29 s, α = 90° after 14 rotation...

Guide

Cover

Table of Contents

Title Page

Copyright

Preface

Begin Reading

List of Authors

Index

Summary of Volume 1

10  End User License Agreement

Pages

v

iii

iv

ix

x

xi

1

2

3

10  4

11  5

12  6

13  7

14  8

15  9

16  10

17  11

18  12

19  13

20  14

21  15

22  16

23  17

24  18

25  19

26  20

27  21

28  22

29  23

30  24

31  25

32  27

33  28

34  29

35  30

36  31

37  32

38  33

39  34

40  35

41  36

42  37

43  38

44  39

45  40

46  41

47  42

48  43

49  45

50  46

51  47

52  48

53  49

54  50

55  51

56  52

57  53

58  54

59  55

60  56

61  57

62  58

63  59

64  60

65  61

66  62

67  63

68  64

69  65

70 66

71  67

72  68

73  69

74  70

75  71

76  72

77  73

78  74

79  75

80  77

81  78

82  79

83  80

84  81

85  82

86  83

87  84

88  85

89  86

90  87

91  88

92  89

93  90

94  91

95  92

96  93

97  95

98  96

99  97

100  98

101  99

102  101

103  102

104  103

105  104

106  105

107  106

108  107

109  108

110  109

111  110

112  111

113  112

114  113

115  115

116  116

117  117

118  118

119  119

120  120

121  121

122  122

123  123

124 124

125  125

126  126

127  127

128  128

129  129

130  130

131  131

132  132

133  133

134  134

135  135

136  136

137  137

138  138

139  139

140  140

141  141

142  143

143  144

144  145

145  146

146  147

147  149

148  151

149 152

150 153

151 154

152  155

153  156

154  157

155  159

Fluid Mechanics at Interfaces 2

Подняться наверх