Читать книгу Encyclopedia of Renewable Energy - James Speight G., James G. Speight - Страница 15

Absorption Dehydration

Оглавление

An example of absorption dehydration is known as glycol dehydration and diethylene glycol, the principal agent in this process, has a chemical affinity for water and removes water from the gas stream. In this process, a liquid desiccant dehydrator serves to absorb water vapor from the gas stream.

Essentially, glycol dehydration involves using a glycol solution, usually either diethylene glycol (DEG) or triethylene glycol (TEG), which is brought into contact with the wet gas stream in a contactor. The glycol solution will absorb water from the wet gas and once absorbed, the glycol particles become heavier and sink to the bottom of the contactor where they are removed. The gas stream, having been stripped of most of its water content, is then transported out of the dehydrator. The glycol solution, bearing all of the water stripped from the gas stream, is put through a specialized boiler designed to vaporize only the water out of the solution. The boiling point differential between water (100°C, 212°F) and glycol (204°C, 400°F) makes it relatively easy to remove water from the glycol solution, allowing it to be reused in the dehydration process.

As well as absorbing water from the wet gas stream, the glycol solution occasionally carries with it small amounts of methane and other compounds found in the wet gas. In the past, this methane was simply vented out of the boiler. In addition to losing a portion of the gas stream that was extracted, this venting contributes to air pollution and the greenhouse effect. In order to decrease the amount of methane and other compounds that are lost, flash tank separator-condensers work to remove these compounds before the glycol solution reaches the boiler. Essentially, a flash tank separator consists of a device that reduces the pressure of the glycol solution stream, allowing the methane and other hydrocarbons to vaporize (flash).

The glycol solution then travels to the boiler, which may also be fitted with air or water cooled condensers, which serve to capture any remaining organic compounds that may remain in the glycol solution. The regeneration (stripping) of the glycol is limited by temperature: diethylene glycol and triethylene glycol decompose at or before their respective boiling points. Such techniques as stripping of hot triethylene glycol with dry gas (e.g., heavy hydrocarbon vapors, the Drizo process) or vacuum distillation are recommended.

In practice, absorption systems recover 90 to 99% by volume of methane that would otherwise be flared into the atmosphere.

See also: Absorption, Gas Cleaning, Gas Processing, Gas Treating.

Encyclopedia of Renewable Energy

Подняться наверх