Читать книгу Пропедевтика внутренних болезней - Группа авторов - Страница 44

Глава 2. Сердечно-сосудистая система
2.3. Инструментальные методы исследования сердца
2.3.1. Электрокардиография

Оглавление

Из инструментальных методов самым важным в диагностике заболеваний сердечно-сосудистой системы является электрокардиография, поэтому съемка электрокардиограммы и основные правила ее расшифровки должны быть известны всем медицинским работникам.

Работающее сердце создает вокруг себя электрическое поле, которое изменяется на протяжении сердечного цикла. Метод электрокардиографии (ЭКГ) регистрирует изменения этого поля с поверхности тела. Существование электрического поля сердца и его изменения объясняются, во-первых, свойствами клеток – кардиомиоцитов, а во-вторых, неодинаковым электрическим состоянием клеток различных отделов сердца в определенные моменты времени.

В состоянии покоя (диастола) все кардиомиоциты имеют на поверхности одинаковый положительный заряд. Поэтому если установить два электрода над разными участками сердца (т. е. записать ЭКГ), они не зарегистрируют разности потенциалов между ними. В этот момент сердце не создает электрического поля, которое можно было бы обнаружить.

Далее начинается процесс возбуждения клеток (деполяризация), и заряд на их поверхности меняется на отрицательный. Это изменение не происходит во всех клетках одновременно. Раньше возбуждаются клетки, расположенные вблизи водителя ритма (синусовый узел) и проводящих путей, позже – остальные клетки. В результате в отдельные моменты времени одна часть сердца оказывается в возбужденном состоянии, а другая – нет. Электроды, установленные над этими участками сердца, регистрируют разность потенциалов между ними, т. е. наличие электрического поля. В каждый последующий момент времени поле изменяется, так как волна деполяризации захватывает новые и новые участки. ЭКГ регистрирует изменения поля в виде зубца Р – деполяризация предсердий и комплекса QRS – деполяризация желудочков (рис. 2.16).

Затем наступает момент, когда все участки сердца находятся в возбужденном состоянии и имеют на поверхности одинаковый отрицательный заряд.

Электрическое поле исчезает. Разность потенциалов между участками сердца не регистрируется. На ЭКГ это соответствует сегменту ST (для желудочков), который располагается на изолинии.

Далее в клетках, расположенных в основании сердца, где раньше всего появилось возбуждение, начинается процесс реполяризации, и на их поверхности вновь образуется положительный заряд. Возбудившиеся позже клетки еще сохраняют отрицательный заряд. Таким образом, вновь появляется электрическое поле, которое изменяется в соответствии с прохождением по всем клеткам сердца волны реполяризации. На ЭКГ в это время регистрируется волна Т – реполяризация желудочков. Реполяризация предсердий также происходит, но следующая волна Та слишком мала по амплитуде и не видна на обычной ЭКГ.


Рис. 2.16. Схема электрокардиограммы с обозначением зубцов. Объяснения в тексте


В конечном итоге все клетки миокарда возвращаются к исходному состоянию покоя (поляризация) и получают одинаковый положительный заряд. Электрическое поле окончательно исчезает. На ЭКГ регистрируется изолиния до начала следующего цикла.

В любой момент существования электрического поля его характеристикой является векторная величина, которая графически изображается в виде отрезка со стрелкой, направленной к положительному полюсу. Такое представление позволяет выполнять анализ ЭКГ, поскольку каждый зубец является отражением существующего в этот момент вектора. Конкретная величина и направление зубца определяются проекцией вектора на линию соответствующего отведения.

Необходимо выделить несколько наиболее существенных положений вектора, последовательно наблюдающихся на протяжении сердечного цикла:

1) вектор деполяризации предсердий соответствует зубцу Р и имеет общее направление влево, вниз и вперед;

2) начальный вектор деполяризации желудочков связан с возбуждением левой стороны межжелудочковой перегородки (МЖП), куда благодаря строению проводящей системы раньше всего приходит электрическое возбуждение; общее направление вектора – вперед и вправо;

3) основной вектор деполяризации желудочков складывается из векторов деполяризации основной мышечной массы левого и правого желудочков; суммарный вектор имеет общее направление вниз, влево и назад;

4) терминальный вектор деполяризации желудочков связан с возбуждением их заднебазальных отделов, которое происходит в последнюю очередь; вектор направлен вверх и назад;

5) вектор реполяризации желудочков направлен вниз, влево и вперед.

Чтобы оценить электрическое поле сердца, характеризуемое перечисленной последовательностью векторов, используется запись нескольких ЭКГ-отведений. Каждое из них представляет собой стандартно ориентированную в пространстве линию между двумя установленными на теле пациента электродами (в ряде случаев используется комбинация нескольких электродов, чтобы получить нужное направление линии). Векторы электрического поля сердца проецируются на линию регистрируемого отведения, что вызывает появление зубцов в данном отведении. Положительные зубцы регистрируются, если направление вектора и линии отведения совпадают, отрицательные – если их направления противоположны. Поскольку каждое отведение имеет свое определенное направление в пространстве, то один и тот же вектор в одном отведении может дать положительный зубец, а в другом – отрицательный.

Несколько отведений необходимы для того, чтобы сопоставление записанных зубцов позволило понять направление и величину существовавших векторов. Для облегчения решения данной задачи набор отведений должен представлять собой целостную стандартную систему, позволяющую уловить отклонения векторов в любой из трех плоскостей – фронтальной, горизонтальной и сагиттальной.

В обычной ЭКГ используются 12 общепринятых отведений (рис. 2.17). Шесть из них записываются с электродов, расположенных на конечностях. Их линии располагаются во фронтальной плоскости и позволяют улавливать отклонения векторов влево, вправо, вверх и вниз. Другие шесть отведений записываются с расположенных на грудной клетке электродов. Их линии находятся в горизонтальной плоскости и улавливают отклонения векторов влево, вправо, вперед и назад.


Рис. 2.17. Двенадцать общепринятых отведений ЭКГ: а – отведения от конечностей (фронтальная плоскость); б – грудные отведения (горизонтальная плоскость). Объяснения в тексте


Необходимым элементом анализа записанной ЭКГ является определение электрической оси сердца. Она отражает направление общего результирующего вектора сердца в момент наибольшей разности потенциалов во фронтальной плоскости. Положение электрической оси сердца характеризуется углом между электрической осью и горизонталью – угол альфа (α). В клинической практике достаточным является визуальный метод определения угла α. Максимальная амплитуда QRS, зарегистрированная в одном из отведений от конечностей, предполагает совпадение суммарного вектора с этим отведением. Угол α будет соответствовать углу отклонения данного отведения от горизонтальной линии. Если максимальная амплитуда QRS регистрируется в двух соседних отведениях, то вектор располагается между ними. Если комплекс в одном из отведений низковольтный, то вектор направлен перпендикулярно к линии этого отведения, что помогает более точно определить величину угла α.

Электрическая ось сердца при нормальном его расположении находится в пределах от +10° до +70°. У астеников электрическая ось направлена более вертикально, и угол α может увеличиваться до +90°. У гиперстеников электрическая ось отклоняется влево, угол α уменьшается до 0°. Более значительные отклонения чаще бывают связаны с различными патологическими изменениями, но могут являться и вариантами нормальной ЭКГ. Отклонения электрической оси сердца от ее средних значений отражают повороты сердца вокруг переднезадней оси.

При оценке ЭКГ выделяют также повороты сердца вокруг его продольной оси, проходящей от основания к верхушке. Эти повороты определяются по грудным отведениям. Обычное соотношение зубцов в грудных отведениях следующее: зубец R (небольшой) в отведении V1, нарастает до максимума в отведении V4 и несколько уменьшается в отведениях V5 и V6; зубец S максимальный в V2, постепенно уменьшается и исчезает к отведению V6; зубец q появляется в V4 и незначительно нарастает к V6. В отведении V3 обычно наблюдается равная величина зубцов R и S – так называемая переходная зона.

Поворот вокруг продольной оси правым желудочком вперед смещает переходную зону к левым грудным отведениям – углубляются зубцы S в отведениях V3, V4, V5, V6. Этот поворот сопровождается более вертикальным расположением электрической оси, что вызывает появление qRIII и SI. Поворот левым желудочком вперед смещает переходную зону вправо, что вызывает увеличение зубцов R в отведениях V3, V2, V1, исчезновение зубцов S в левых грудных отведениях. Этот поворот сопровождается более горизонтальным расположением электрической оси и регистрацией qRI и SIII в отведениях от конечностей.

При анализе ЭКГ производится не только визуальное сравнение зубцов в различных отведениях, но и ряд измерений. Определяются амплитуды зубцов (по вертикали) и временные интервалы (по горизонтали). Обязательными являются следующие измерения временных интервалов:

1) зубец P (в норме не превышает 0,10 с);

2) интервал PQ – время от начала деполяризации предсердий до начала деполяризации желудочков (0,13—0 с);

3) комплекс QRS (≤ 0,10 с);

4) интервал QRST (электрическая систола желудочков) сравнивается с должной его продолжительностью, корригированной относительно частоты сердечного ритма;

5) интервал RR – продолжительность сердечного цикла для точного расчета частоты сердечных сокращений. Она рассчитывается делением 60 с на RR-интервал.

Пропедевтика внутренних болезней

Подняться наверх