Читать книгу Происхождение рака. Новое в науке о здоровье и жизни человека - Ольга Елисеева - Страница 3

Часть I
Фрактально-голографический геном и квантовая теория рака
Материя плазмы крови человека

Оглавление

Чтобы ближе познакомиться с исследованиями периферической крови, понять сущность квантовых процессов, происходящих в ней во время болезни, нужно ознакомиться с самим понятием «материя плазмы крови» и получить некоторое представление о ней.

Термин «плазма» не был введен в научный оборот физиками. Его впервые использовал чешский врач-физиолог Ян Евангелиста Пуркинес (1787–1869) для своих экспериментов. Он получал это текучее вещество, имевшее фактуру желе, после удаления из взятой на анализ крови лейкоцитов и эритроцитов. Позже было обнаружено, что физически плазма крови обладает свойствами, нехарактерными для обыкновенных жидкостей, и ученые возвели ее в звание особого агрегатного состояния вещества, что позволило впоследствии, по аналогии, плазмой назвать и четвертое – после твердого, жидкого и газообразного – ионизированное квазинейтральное фазовое состояние материи.

Известно, что плазма – это жидкая составляющая крови. В нее входят такие сложные молекулы, как белки, витамины, гормоны, ферменты; некоторые разновидности клеток, а также положительно и отрицательно заряженные ионы, нейтроны и немного свободных электронов. Кроме того, важная роль отводится свободным электронам и ионизированным атомам. Это позволяет характеризовать плазму крови как частично ионизированную материю.

Основной особенностью плазмы крови является ее квазинейтральность. Это означает, что объемные плотности положительно и отрицательно заряженных частиц, из которых она образована, оказываются почти равными, но только почти. Приставка «квази» означает, что нейтральность плазмы крови соблюдается не локально, а в среднем. Это очень важная ее особенность, зная которую, можно сказать, насколько она ионизирована, или соответствует ли данная материя именно плазме, а не относится к другому виду материи.

В небольших объемах плазмы вследствие различных причин происходит разделение положительных и отрицательных зарядов, что вызывает нарушение электронейтральности. Тогда в этих объемах создаются электрические поля, стремящиеся восстановить электронейтральность.

Для плазмы присуще проявление коллективного поведения частиц во время плазменных колебаний. В плазме могут распространяться электромагнитные и звуковые волны. Электромагнитные волны есть возмущение электромагнитного поля в плазме, звуковые волны – возмущение давления, или плотности плазмы. Магнитная упругость плазмы порождает в ней так называемые магнитно-гидродинамические волны двух типов. Наглядно их можно представить как изгибание колебаний силовых линий вдоль или поперек магнитного поля плазмы. Интересно, что в плазме могут возникать ионно-звуковые колебания на частотах радиодиапазона – «радиозвук». Звуковое сопровождение сопутствует возбуждению электромагнитного поля с резким подъемом его интенсивности. Помимо звука и «радиосвета», в зависимости от плазменных образований в материи плазмы крови могут возникать и другие волны.

Состоянию плазмы крови человека соответствует определенное кислотно-щелочное равновесие (КЩР), которое характеризуется специальным показателем pH крови («сила водорода»). Значение pH зависит от соотношения между положительно заряженными ионами (формирующими кислую среду) и отрицательно заряженными ионами (формирующими щелочную среду).

Диапазон колебаний водородного показателя для крови здорового человека (pH) составляет 7,37–7,44, (нейтральное значение pH среды 7,0).

Кислотно-щелочное равновесие крови поддерживается буферными системами плазмы и клетками крови. Буферные системы крови – это физиологические системы, которые обеспечивают уровень КЩР. Основная функция буферных систем заключается в предотвращении значительных сдвигов уровня водородного показателя (pH), путем взаимодействия буфера как с кислотой, так и с основанием. Получается, что кислотно-щелочной баланс – это фактор жизни человека. Исправление дисбаланса буферных систем крови переводит человека из болезненного в здоровое состояние. То есть необходимо уметь воздействовать на свойства плазмы.

Важнейшими буферными системами крови являются бикарбонатная и наиболее мощная гемоглобиновая, фосфатная и белковая. Каждая система состоит из двух частей – слабой кислоты и соли этой кислоты, сильного основания.

Бикарбонатная буферная система представляет собой кислотно-щелочную пару, состоящую из молекулы угольной кислоты H2CO3, осуществляющей функции донора протона, и бикарбоната – иона HCO3 (—), выполняющего роль акцептора протона.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната и приводят к образованию слабо диссоциирующей угольной кислоты. Последующее снижение уровня угольной кислоты достигается в результате ускоренного выделения углекислого газа через легкие в процессе их гипервентиляции. Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит каких-либо заметных сдвигов значения pH. Бикарбонатная буферная система функционирует как эффективный регулятор в области pH 7,4.

Данная система тесно связана с гемоглобиновой буферной системой, которая является самой мощной буферной системой крови. Она в 9 раз мощнее бикарбонатной буферной системы, так как на ее долю приходится 75 % от всей буферной емкости крови.

Участие гемоглобина в регулировании pH крови связано с его ролью в транспорте кислорода. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от насыщения его кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой. Отдавая же кислород и связывая углекислый газ, гемоглобин, наоборот, превращается в очень слабую органическую кислоту.

Учитывая, что постоянство кислотно-щелочного равновесия в организме играет существенную роль в протекании всех биохимических процессов, в клинике при анализе крови значительный интерес представляет определение резервной щелочности крови.

В поддержании в организме кислотно-щелочного равновесия участвуют и другие буферные системы, а также ряд органов: легкие, почки, кожа, печень (одной из функций которой является нейтрализация кислых продуктов обмена) и кишечник.

Происхождение рака. Новое в науке о здоровье и жизни человека

Подняться наверх