Читать книгу Treatise on Poisons - Robert Sir Christison - Страница 44

Section I.—Of the Tests for Oxalic Acid.

Оглавление

Oxalic acid is commonly in small crystals of the form of flattened six-sided striated prisms, transparent, colourless, free of odour, very acid to the taste, and permanent in the air. Two other common vegetable acids, the citric and tartaric acids, present a totally different crystalline form. In general appearance it greatly resembles the sulphate of magnesia, for which it has been so often and so fatally mistaken. So close, indeed, is the resemblance, that repeatedly, on desiring several persons to point out which was the poison and which the laxative, I have found as many fix on the wrong as on the right parcel. The sulphate of magnesia has of course a very different taste, being strongly bitter. Various plans have been devised for preventing the accident to which this unlucky resemblance has given rise. The best of them imply the use of a safeguard by the patient before he takes his laxative draught. It seems to have escaped the notice of those who have proposed the plans in question, that, if accidents are to be prevented in this manner, by far the simplest and most effectual security will be to let the public know, that a laxative salt ought always to be tasted before being swallowed. Its solubility has been much overrated by some chemists. It does not appear to me soluble in less than eleven parts of water.

In determining the medico-legal tests for oxalic acid, it will be sufficient to consider it in two states,—dissolved in water,—and mixed with the contents of the stomach and intestines or vomited matter. If the substance submitted to examination is in the solid state, the first step is to convert it into a solution.

1. In the form of a pure solution, its nature may be satisfactorily determined by the following process.

The acidity of the fluid is first to be established by its effect on litmus-paper.—A small portion is next to be tested with ammonia, which, if the solution of the acid be sufficiently concentrated, will produce a radiated crystallization, as the oxalate of ammonia formed is much less soluble than oxalic acid itself. This property, according to Dr. O’Shaughnessey, distinguishes it from every other acid.[393] The remainder of the fluid is next to be subjected to the following reagents.

Hydrochlorate of lime causes a white precipitate, the oxalate of lime; which is dissolved on the addition of a drop or two of nitric acid,—and is not dissolved when similarly treated with hydrochloric acid, unless the acid is added in very large proportion.

The easy solubility of the oxalate of lime in nitric acid distinguishes the precipitate from the sulphate of lime, which the present test might throw down from solutions of the sulphates, and which is not soluble in a moderate quantity of nitric acid without the aid of heat. The insolubility of the oxalate of lime in hydrochloric acid on the other hand distinguishes the precipitate from the tartrate, citrate, carbonate and phosphate of lime, which the test might throw down from any solution containing a salt of these acids. The last four precipitates are redissolved by a drop or two of hydrochloric acid; but the oxalate is not taken up till a large quantity of that acid is added.

Sulphate of lime in solution causes a white precipitate with oxalic acid, and not with any other.[394]

Sulphate of copper causes a faint bluish-white, or greenish-white precipitate, which is not redissolved on the addition of a few drops of hydrochloric acid. The precipitate is the oxalate of copper. It is redissolved by a large proportion of hydrochloric acid.

This test does not precipitate the sulphates, hydrochlorates, nitrates, tartrates, citrates. But with the carbonates and phosphates it forms precipitates resembling the oxalate of copper. The oxalate, however, is distinguished from the carbonate and phosphate of copper by not being redissolved on the addition of a few drops of hydrochloric acid.

Nitrate of silver causes a dense, white precipitate, the oxalate of silver; which, when collected on a filter, dried and heated, becomes brown on the edge, then fulminates faintly and is dispersed.

The object of the supplementary test of fulmination is to distinguish the oxalate of silver from the numberless other white precipitates which are thrown down by the nitrate of silver from solutions of other salts. The property of fulmination, which is very characteristic, requires, for security’s sake, a word or two of explanation, in consequence of the effect of heat on the tartrate and citrate of silver. The citrate when heated becomes altogether brown, froths up, and then deflagrates, discharging white fumes and leaving an abundant, ash-gray, coarsely fibrous, crumbly residue, which on the farther application of heat becomes pure white, being then pure silver. The tartrate also becomes brown and froths up, but does not even deflagrate, white fumes are discharged, and there is left behind a botryoidal mass, which, like the residue from the citrate, becomes pure silver when heated to redness. Another distinction between the oxalate and tartrate is that the former continues permanent at the temperature of ebullition, while the latter becomes brown. The preceding process or combination of tests will be amply sufficient for proving the presence of oxalic acid, free or combined, in any fluid, which does not contain animal or vegetable principles.

2. The only important modifications in the analysis rendered necessary by the admixture of organic principles, occur in the case of the contents of the alimentary canal or vomited matters.

Dr. Coindet and I proved, that oxalic acid has not any chemical action with any of the common animal principles except gelatin, which it rapidly dissolves;—and that this solution is of a peculiar kind, not being accompanied with any decomposition, either of the acid or of the gelatin.[395] Consequently oxalic acid, so far as concerns the tissues of the stomach or its ordinary contents, is not altered in chemical form, and remains soluble in water.

In such a solution, however, a variety of soluble principles are contained, which would cause abundant precipitates with two of the tests of the process,—sulphate of copper and nitrate of silver; so that the oxalates of these metals could not possibly be detached in their characteristic forms. The process for a pure solution, therefore, is inapplicable to the mixtures under consideration.

But changes of still greater consequence are effected on the poison by exhibiting antidotes during life. It is now generally known, that the proper antidotes for oxalic acid are magnesia and chalk. Each of these forms an insoluble oxalate; so that if either had been given in sufficient quantity, no oxalic acid will remain in solution, and the proofs of the presence of the poison must be sought for in the solid contents of the stomach or solid matter vomited.

The following process for detecting the poison will apply to all the alterations which it may thus have undergone.

Process for Compound Mixtures.—If chalk or magnesia has not been given as an antidote, the suspected mixture is to be macerated if necessary for a few hours in a little distilled water, then filtered, and the filtered fluid neutralized with carbonate of potass. If on the other hand chalk or magnesia has been given, the mixture is to be left at rest for some time, and the supernatant fluid then removed. This fluid, if not acid, may be thrown away; but if acid, it may be treated as already directed for a suspected mixture, where chalk or magnesia has not obtained entrance. After the removal of the supernatant liquid, pick out as many solid fragments of animal or vegetable matter as possible; and add as much pure water to the insoluble residue as will give the mass a sufficiently thin consistence. Add now to the mixture about a twentieth of its weight of carbonate of potass, and boil gently for two hours, or till the organic matter is all dissolved. While dissolution thus takes place, a double interchange is effected between the elements of the carbonate of potass on the one hand, and those of the earthy oxalate on the other, so that an oxalate of potass will at length exist in solution. The fluid when cold is next to be filtered, then rendered very faintly acidulous with nitric acid, then filtered and rendered very faintly alkaline with carbonate of potass, and filtered a third time. At each of these steps some animal matter will be thrown down.

From this point onwards the process proceeds in the same way, whatever may have been the original form in which the acid existed in the mixture; for the oxalate of lime or magnesia in the second case is converted into oxalate of potass.

Add now the solution of acetate of lead to the fluid as long as any precipitate is formed. Collect the precipitate on a filter, wash it well, and dry it by compression between folds of bibulous paper. Remove this precipitate, which consists of oxalate of lead and organic matter in union with oxide of lead, and rub it up very carefully while damp with a little water in a mortar. Transmit sulphuretted hydrogen gas briskly for an hour, so that the whole white precipitate shall be thoroughly blackened; filter and boil. In this manner is formed a sulphuret of lead, which retains a great deal of animal matter; and the oxalic acid being set free, is found in the solution tolerably pure. Filtration before boiling is an essential point in this step, to prevent animal matter being dissolved by the water from the sulphuret of lead. More animal matter may still be separated by evaporating the liquid to dryness at 212°, keeping it at that temperature for a few minutes, and redissolving and filtering. The solution will now exhibit the properties of oxalic acid.

I have found that when this process was applied to a decoction of an ounce of beef in six ounces of water, with which one grain of anhydrous oxalic acid had been mixed, all the tests acted characteristically on the solution ultimately procured. I have farther found, that when two grains of oxalate of lime, which correspond with one grain of oxalic acid, were mixed with a similar decoction in which some fragments of beef were purposely left to complicate the process, a solution was eventually obtained, which gave with muriate of lime a white precipitate insoluble in a little muriatic acid, with sulphate of copper a greenish-white precipitate also insoluble in a little muriatic acid, and with nitrate of silver a white precipitate which fulminated and was almost all dispersed, but left a little charcoal, owing to its containing a small proportion of animal matter. In a case which lately happened in London, every test acted as here described, except that the oxalate of lime did not fulminate, owing to the presence of organic impurities.[396] In order to try the test of fulmination in such circumstances, it is essential to dry the precipitated oxalate of silver thoroughly before raising the temperature to the point at which fulmination usually occurs.

The process now recommended is both delicate and accurate. An objection has been advanced against it,—that acetate of lead will throw down chloride of lead as well as the oxalate of lead; that both will subsequently be decomposed by the sulphuretted-hydrogen? and that the hydrochloric acid thus brought into the solution with the oxalic acid will be precipitated by the nitrate of silver, and form a mixture of salts which will not fulminate characteristically.[397] This objection is not well founded. Chloride of lead being soluble in thirty parts of temperate water, it will seldom be thrown down from such fluids as occur in medico-legal inquiries; and besides it is easily removed, as I have ascertained, by washing the precipitate with moderate care on the filter.

Professor Orfila has advanced another objection,—that the process will yield all the indications mentioned above, if binoxalate of potash be present, or sorrel-soup, which contains a little of that salt.[398] The objection is valid, were these substances apt to come in the way. But the binoxalate of potash is not put to any medicinal use in Britain, and English cookery does not acknowledge the “soupe à l’oseille.” The process he recommends to meet the difficulty, an important one in France, is the following: 1. Having made a watery solution as above, evaporate nearly to dryness, agitate the residue with cold pure alcohol, repeatedly during a period of several hours; decant the tincture, and repeat this step with more alcohol; evaporate to obtain crystals, if possible; dissolve these again in cold pure alcohol, and crystallize a second time by evaporation. If crystals do not form on first concentrating the alcoholic solution, evaporate it till a pellicle begins to form, agitate the residue with cold pure alcohol, and concentrate again to obtain crystals. Lastly, examine the crystals by the tests for pure oxalic acid. The object of these steps in the process is to separate binoxalate of potass, oxalate of magnesia and oxalate of lime, which, he says, are all either not soluble, or very sparingly so, in absolute alcohol. 2. More oxalic acid may be got by acting with distilled water on the matter left by the action of alcohol, evaporating this watery solution nearly to dryness, agitating the residuum with cold alcohol as before, and so on. 3. The preceding operations may have left oxalate of magnesia and oxalate of lime unacted on by the water among the solids remaining on the filter. The former compound may be dissolved out by cold hydrochloric acid diluted with four times its volume of water; and by an excess of pure carbonate of potass, the oxalate of magnesia in the solution is converted into insoluble carbonate of magnesia and soluble oxalate of potass, from which oxalic acid is to be obtained by a salt of lead and sulphuretted-hydrogen, as explained in my own process. 4. Oxalate of lime, which may still remain, is to be sought for by boiling the residuum of the action of hydrochloric acid with solution of bicarbonate of potash, so as to obtain here also an oxalate of potass in solution. I have not had an opportunity of trying this method. But I find, that, contrary to Orfila’s statement, binoxolate of potass, though sparingly soluble in cold alcohol of the density of 800, is sufficiently so to vitiate the principle on which the process is founded.

Caustic potass must not be used for decomposing oxalate of lime or magnesia, because the pure alkali, as Gay-Lussac has shown, produces oxalic acid in acting on animal substances at a boiling temperature. Carbonate of potass has no such effect.

The discovery of oxalic acid in the form of oxalate of lime in the stomach or vomited matter is exposed to a singular fallacy, if a material quantity of rhubarb has been taken recently before death, or before the discharge of the vomited matter. For according to the researches of M. Henry of Paris, rhubarb root always contains some oxalate of lime, and some samples yield so much as 30 and even 33 per cent.[399]

Treatise on Poisons

Подняться наверх