Читать книгу Вечность. В поисках окончательной теории времени - Шон Б. Кэрролл - Страница 17

Часть I. Время, опыт и Вселенная
Глава 2. Тяжелая рука энтропии
Самый надежный закон природы

Оглавление

Принцип, определяющий существование необратимых процессов, сформулирован во втором начале термодинамики:

Энтропия изолированной системы либо остается постоянной, либо со временем увеличивается.

(Первое начало утверждает, что полная энергия остается постоянной.[24]) Многие считают второе начало самым надежным среди всех открытых человечеством физических законов. Если бы вас попросили спрогнозировать, какой из принятых в настоящее время физических принципов останется в силе и через тысячу лет, то вы с уверенностью могли бы поставить на второе начало термодинамики. Сэр Артур Эддингтон, ведущий астрофизик начала XX века, высказался об этом довольно категорично:

Если кто-то скажет, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла (законами, описывающими электричество и магнетизм), – тем хуже для уравнений Максвелла. Если обнаружится, что ее опровергают наблюдаемые явления, – ну что тут скажешь, эти экспериментаторы нередко запарывают свою работу. Но если ваша теория противоречит второму началу термодинамики, я не думаю, что у нее есть хоть какие-то шансы; ей остается лишь исчезнуть, потерпев унизительное поражение.[25]

Чарльз Перси Сноу, британский интеллектуал, физик и романист, вероятно, наиболее известен благодаря широкой пропаганде собственного убеждения, что «две культуры» естественных и гуманитарных наук отдалились друг от друга, но обе они должны быть частями нашего общего цивилизованного мира. Когда его спросили, какой основополагающий научный факт должен быть известен любому образованному человеку, он тоже выбрал второе начало термодинамики:

Множество раз мне приходилось бывать в обществе людей, которые по нормам традиционной культуры считаются высокообразованными. Обычно они с большим пылом возмущаются литературной безграмотностью ученых. Как-то раз я не выдержал и спросил, кто из них может объяснить, что такое второе начало термодинамики. Ответом было молчание или отказ. А ведь задать этот вопрос ученому значит примерно то же самое, что спросить у писателя: «Читали ли вы Шекспира?»[26]

Уверен, барон Сноу пользовался успехом на коктейльных вечеринках в Кембридже. (Справедливости ради замечу, что позднее он сам признался в том, что даже физики не до конца понимают второе начало термодинамики.)

Наше современное определение энтропии было предложено австрийским физиком Людвигом Больцманом в 1877 году. Однако понятие энтропии и ее использование во втором начале термодинамики отсылает нас к немецкому физику Рудольфу Клаузиусу в 1865 год. А само второе начало было сформулировано еще раньше – французским военным инженером Николя Леонаром Сади Карно в 1824 году. Но как Клаузиус умудрился использовать энтропию во втором начале, не зная определения, и как Карно сумел сформулировать второе начало, вообще не используя понятие энтропии?

Девятнадцатый век был выдающейся эпохой в истории развития термодинамики – учении о теплоте и ее свойствах. Пионеры термодинамики изучали взаимодействие температуры, давления, объема и энергии между собой. Их интерес ни в коем случае не был абстрактным – дело происходило при зарождении промышленной эры, и в немалой степени этих ученых вдохновляло желание построить лучшие паровые двигатели.

Сегодня ученые понимают, что теплота – это форма энергии и что температура объекта представляет собой всего лишь меру средней кинетической энергии (энергии движения) атомов объекта. Однако в XIX веке ученые не верили в атомы, и они не очень хорошо понимали, что такое энергия. Карно, чью гордость ранил тот факт, что технология паровых двигателей англичан намного превосходила то, что могли предложить французы, поставил себе целью понять, насколько эффективным может быть такой двигатель: сколько полезной работы он может произвести, сжигая определенный объем топлива. Он доказал, что у этой эффективности есть фундаментальный предел. Сделав интеллектуальный скачок от реальных машин к идеализированным «паровым двигателям», Карно продемонстрировал, что существует наилучший двигатель, умеющий производить больше всего работы на определенном количестве топлива, функционируя при определенной температуре. Его главной идеей, что неудивительно, стала минимизация потерь тепла. Для нас тепло полезно, оно обогревает наши дома в холодную зиму, однако оно не помогает выполнять то, что физики называют «работой», – перемещать что-нибудь вроде клапана или маховика с место на место. Карно понял, что даже самый эффективный из реально возможных двигателей все равно не будет идеальным; какое-то количество энергии будет теряться во время работы. Другими словами, работа парового двигателя – это необратимый процесс.

Таким образом, Карно осознал, что двигатели совершали что-то, что невозможно было отменить. И уже Клаузиус в 1850 году понял, что данный факт отражает закон природы. Он сформулировал свой закон так: «Теплота не может спонтанно начать течь от холодных тел к теплым». Наполните воздушный шар горячей водой и погрузите его в холодную воду. Каждый знает, что температуры начнут выравниваться: вода в воздушном шаре будет остывать, а вода в емкости, куда его погрузили, станет нагреваться. Противоположный процесс невозможен. Физическая система стремится к достижению равновесия – состоянию покоя, которое максимально однородно, а температуры всех его составляющих одинаковы. Благодаря этой догадке Клаузиус сумел заново получить те же результаты Карно для паровых двигателей.

Так каким же образом закон Клаузиуса (теплота не течет спонтанно от холодных тел к горячим) связан со вторым началом термодинамики (энтропия не уменьшается спонтанно)? Ответ прост: это один и тот же закон. В 1865 году Клаузиус переформулировал свой исходный принцип, используя новую величину, которой он дал название «энтропия». Рассмотрим постепенно остывающий объект, то есть объект, передающий тепло в окружающую среду. В каждый момент этого процесса возьмем количество потерянной теплоты и разделим на температуру объекта. Энтропия – это накопленное значение этой величины (количества теплоты, поделенного на температуру тела) за весь период действия процесса. Клаузиус доказал, что стремление теплоты покидать горячие объекты и перетекать к холодным в точности эквивалентно заявлению о том, что энтропия замкнутой системы может только увеличиваться и никогда не уменьшается. Состояние равновесия – это всего лишь такое состояние, в котором энтропия достигла максимального значения и ей некуда больше деваться; у всех соприкасающихся объектов одинаковая температура.

Если предыдущее объяснение вам кажется несколько абстрактным, то энтропию можно описать и гораздо более простыми словами: энтропия измеряет бесполезность определенного количества энергии.[27] У галлона бензина есть энергия, и она полезна, – мы можем заставить ее работать. Процесс сжигания бензина для обеспечения работы двигателя не меняет полную энергию; если тщательно отслеживать все происходящее, то будет понятно, что энергия остается постоянной.[28] Однако с течением времени эта энергия становится все более бесполезной. Она превращается в теплоту и шум, а также в движение транспортного средства, на котором установлен двигатель, и даже это движение в конечном счете замедляется из-за трения. Пока энергия превращается из полезной в бесполезную, энтропия увеличивается.

Второе начало термодинамики не подразумевает, что энтропия системы никогда не может уменьшаться. Например, мы могли бы изобрести машину, которая отделяла бы молоко от кофе. Но хитрость в том, что уменьшить энтропию одной вещи можно, лишь увеличив энтропию вокруг нее. У нас, людей, и у машин, которые мы могли бы применять для разделения молока и кофе, у еды и топлива, которые мы потребляем, – у всего этого есть энтропия, которая неизменно будет увеличиваться. Физики проводят различие между открытыми системами – объектами, которые взаимодействуют с внешним миром, обмениваясь энтропией и энергией, – и замкнутыми системами – объектами, которые, по сути, изолированы от внешнего влияния. В открытой системе, такой как кофе с молоком, которые мы помещаем в нашу машину, энтропия, несомненно, может уменьшиться. Однако в замкнутой системе, скажем, включающей кофе с молоком, а также машину, оператора машины, топливо и т. д., – энтропия всегда будет увеличиваться или, в крайнем случае, оставаться постоянной.

24

Помимо первого начала термодинамики («в любом физическом процессе полная энергия сохраняется») и второго начала («энтропия замкнутой системы никогда не уменьшается»), есть также и третье начало: существует минимальное значение температуры (абсолютный ноль), при котором энтропия также находится на минимальном уровне. Эти три закона умещаются в простом высказывании: «Ты не можешь выиграть; не можешь остаться при своих; не можешь даже выйти из игры». Однако также есть нулевое начало: если две системы находятся в термодинамическом равновесии с третьей системой, то они находятся в термодинамическом равновесии друг с другом. Попробуйте здесь самостоятельно придумать какую-нибудь забавную аналогию.

25

Eddington, A. S. The Nature of the Physical World (Gifford Lectures). Brooklyn: AMS Press, 1927.

26

Сноу Ч. П. Две культуры и научная революция. Цитата воспроизведена по изданию: Сноу Ч. П. Портреты и размышления / Пер. с англ. М.: Прогресс, 1985. (Snow, C. P. The Two Cultures. Cambridge: Cambridge University Press, 1998).

27

В действительности справедливо было бы признать, что зачатки понятия энтропии и второго начала термодинамики были впервые озвучены отцом Сади Карно – французским математиком и офицером вооруженных сил Лазаром Карно. В 1784 году Лазар Карно написал трактат о механике, в котором утверждал, что создание вечного двигателя невозможно, так как в любой реальной машине полезная энергия будет рассеиваться вследствие дребезжания и тряски ее составляющих частей. Позднее он стал успешным предводителем армии революционной Французской Республики.

28

На самом деле это не совсем верно. Общая теория относительности Эйнштейна, объясняющая гравитацию в терминах искривления пространства – времени, подразумевает, что «энергия» в привычном понимании этого термина не остается постоянной, например, в расширяющейся Вселенной. Мы подробнее поговорим об этом в главе 5. При рассмотрении же большинства двигателей внутреннего сгорания расширением Вселенной можно пренебречь, и для них энергия действительно остается постоянной.

Вечность. В поисках окончательной теории времени

Подняться наверх