Читать книгу Основные концепции естествознания - Степан Карпенков - Страница 16

Глава 2. ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ И ПРИНЦИПЫ
2.6. Статистические и термодинамические свойства макросистем

Оглавление

Развитие представлений о природе тепловых явлений. Вокруг нас происходят явления, внешне не похожие на механическое движение, – это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное) (рис. 2.2). Такие явления называются тепловыми, они играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20–30 °C при смене времени года меняет все вокруг нас: например, с наступлением весны природа преображается, леса и луга зеленеют. От температуры окружающей среды зависят условия жизни на Земле. Люди добились относительной независимости от окружающей среды после того, как научились добывать и поддерживать огонь, – это было одним из величайших открытий, сделанных на заре зарождения человечества.

Рис. 2.2. Шкала температур

Развитие представлений о природе тепловых явлений – пример того, каким сложным и противоречивым путем постигается естественно-научная истина. Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, ибо было замечено, что при соударении тел или их трении они нагреваются.

Первые успехи на пути построения научной теории тепла относятся к началу XVII в., когда был изобретен термометр и появилась возможность количественного исследования тепловых процессов и свойств макросистем. Вновь перед наукой встал вопрос: что же такое теплота? Наметились две противоположные точки зрения. Согласно одной из них – так называемой вещественной теории тепла – теплота рассматривалась как особого рода невесомая «жидкость», способная перетекать от одного тела к другому. Такая жидкость была названа теплородом: чем больше теплорода в теле, тем выше температура тела. Приверженцы другой точки зрения полагали, что теплота – это вид внутреннего движения частиц тела: чем быстрее движутся частицы тела, тем выше его температура. Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках подобных представлений теорию тепла первоначально называли корпускулярной (от слова «корпускула» – частица). Этой теории придерживались И. Ньютон, Р. Гук, Р. Бойль, Бернулли и др.

Большой вклад в развитие корпускулярной теории тепла сделал М. В. Ломоносов, рассматривавший теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании «наибольшей или последней степени холода», когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых уменьшилось число сторонников вещественной теории тепла.

И все же, несмотря на многие преимущества корпускулярной теории тепла, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после экспериментального доказательства сохранения теплоты при теплообмене, что послужило основанием для вывода о сохранении (неуничтожении) тепловой жидкости – теплорода. С помощью введенного понятия теплоемкости тел удалось создать количественную теорию теплопроводности. Многие термины, введенные в то время, сохранились доныне.

В середине XIX в. была установлена связь между механической работой и теплотой. Подобно механической работе количество теплоты стало считаться мерой энергии. Нагревание тела связывалось с увеличением в нем не количества невесомой «жидкости», а энергии – принцип теплорода был вытеснен фундаментальным законом сохранения энергии.

Значительный вклад в развитие теории тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822-888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844–1906) и др.

Термодинамическое и статистическое описание свойств макросистем. Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй – молекулярной физики.

Термодинамика – это наука о тепловых явлениях, в которой не учитывается молекулярное строение тел и тепловые явления характеризуются параметрами, регистрируемыми приборами (термометром, манометром и др.), не реагирующими на воздействие отдельных молекул. Законы термодинамики описывают тепловые свойства тел, число молекул в которых огромно, – такие тела называются макросистемами. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т. п. – все это примеры макросистем. Тепловые свойства макросистем определяются термодинамическими параметрами (параметрами состояния): температурой, давлением и удельным объемом (объемом единицы массы). Эти параметры часто называются функциями состояния системы.

Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) рекомендовано применять только две температурные шкалы – термодинамическую и Международную практическую, градуированные соответственно в Кельвинах (К) и градусах Цельсия (°С). Принято считать, что 0 К (абсолютный нуль) недостижим, хотя сколь угодно близкое приближение к нему возможно.

К концу XIX в. была создана последовательная теория, описывающая свойства большой совокупности атомов и молекул, – молекулярно-кинетическая теория, или статистическая механика. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул, которое анализируется статистическим методом, основанным на том, что свойства макросистемы в конечном результате определяются особенностями движения частиц и их усредненными кинетическими и динамическими характеристиками (скоростью, энергией, давлением и т. д.). Например, температура тела зависит от скорости беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, ее удобно определять через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы: макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.

Термодинамические и статистические методы описания свойств макросистем дополняют друг друга и широко используются при решении различных естественно-научных задач.

Основные положения молекулярно-кинетических представлений. В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три основных положения:

1) любое тело – твердое, жидкое или газообразное – состоит из большого числа весьма малых частиц – молекул (атомы можно рассматривать как одноатомные молекулы);

2) молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении;

3) интенсивность движения молекул, определяемая их скоростью, зависит от температуры вещества.

Тепловые свойства вещества зависят от его внутреннего состояния и строения. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а подобное нагревание металлического стержня не оказывает на него заметного влияния. Такое различное действие нагревания связано с различием во внутреннем строении данных веществ, поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование.

Количественным воплощением молекулярно-кинетических представлений являются опытные газовые законы (законы Бойля – Мариотта, Гей-Люссака, Шарля, Авогадро, Дальтона), уравнение Клапейрона – Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.

Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия Е поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее, т. е.


Конец ознакомительного фрагмента. Купить книгу
Основные концепции естествознания

Подняться наверх