Читать книгу Wave, Wind, and Current Power Generation - Victor Lyatkher M., Victor M. Lyatkher - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Fig. 1.1 Charles Brush’s Wind Turbine. Cleveland City, USA, 1888.Fig. 1.2 High-speed wind power unit. 100 kW. Balaclava City, Crimea, USSR, 1931.Fig. 1.3 Hydraulic unit MCT in repair and maintenance position. Devon Coast, 200...Fig. 1.4 Tidal power plant project based on the unit at Hammerfest strom.Fig. 1.5 Layout of damless tidal power plants in England.Fig. 1.6 Anglesey Coastal 11 MW Tidal Power Plant Project with 1.5 MW MCT Turbin...Fig. 1.7 Average annual wind flows over the United States at 50 m above the eart...Fig. 1.8 Distribution of installed wind farm capacity among several US states.Fig. 1.9 Total U.S. Wind Farm Capacity at the End of the Year.Fig. 1.10 One of the first large wind farms in the United States is Tehachapi Pa...Fig. 1.11 A 3 MW floating wind turbine with a rotor diameter of 90 m. Norway, 20...Fig. 1.12 A Vestas modern serial wind turbine. Power capacity: 1800 kW.Fig. 1.13 Relative time of using the installed capacity of the wind turbine of 6...Fig. 1.14 A TMZ serial wind turbine, Moscow (“Raduga” Scientific Production Asso...Fig. 1.15 Energy characteristic of the NEG Micon wind turbine. The rotor diamete...Fig. 1.16 Energy characteristics of the wind turbine of the “Electropribor” Cent...Fig. 1.17 Energy characteristics of a WTIC wind turbine (USA).Fig. 1.18 Orthogonal wind turbines designed according to the Darrieus scheme (19...Fig. 1.19 A 3.8 MW EOLE orthogonal wind turbine at Cap Chat cape on the southern...Fig. 1.20 Wind turbines 6 m (left) and 25 m (right) in diameter with variable ro...Fig. 1.21 Wind turbine in the village of Dubki. The rotor diameter is 4 m. NACA ...Fig. 1.22 A 16-kW wind turbine, the village of Dubki (Chirkeyskaya HPP), 1981.Fig. 1.23 A 130-kW orthogonal wind turbine at the Chormozak pass, Tajikistan, 19...Fig. 1.24 A 1,000-kW wind turbine in the village of Beringovskyi (Magadan Region...Fig. 1.25 Turbine with straight blades in the downstream of the Krasnoyarsk HPP ...Fig. 1.26 Single-blade 6-stage turbine (US Patent 8007235). A 160 mm chord, one ...Fig. 1.27 Optimized single-blade turbine.Fig. 1.28 Optimized two-blades turbine.Fig. 1.29 Turbine lowered into the water discharge channel is fixed in a rigid f...Fig. 1.30 Capacity of turbine with L=5.4 m. with different R for water speed U=1...Fig. 1.31 Three-tiered turbine with two (left) or three (right) lobes in each ti...Fig. 1.32 Spiral-blade turbine.Fig. 1.33 Field of average driving wind speed over the Northern Indian ocean for...Fig. 1.34 Average height of significant waves in the Northern Indian ocean for 2...Fig. 1.35 Plan of St Martin island. Red lines – locations power systems. 1-area ...Fig. 1.36 General view of the power unit for high-altitude jet flow in the assem...Fig. 1.37 Cross-section of the rotor. Support 14 fixes the mutual position of th...Fig. 1.38 The profile of the blade with the flap. 1 - the axis of rotation of th...Fig.1.39 Plan of the blade’s way.Fig. 1.40 Two-tier multi-blade wind turbine with counter-movement of the rotors....Fig. 1.41 The wind turbine is going on a pontoon in the dry dock and a float is ...Fig. 1.42 Wind speed (m/s) on different height (m).Fig. 1.43 Wave power unit with an underwater orthogonal turbine.Fig. 1.44 Wave heights (m) as function of period T (sec) for different wind spee...Fig. 1.45 Power of straight blade hydro turbines with length L=5.4m, Blades GAW-...Fig.1.46 Imet complex for economical production of pure hydrogen using membrane ...

2 Chapter 2Fig. 2.1 Modern collinear wind turbine. The axis of rotation (1) is parallel to ...Fig. 2.2 Orthogonal high-speed units with an axis of rotation (1) perpendicular ...Fig. 2.3 Flow diagram in the turbine zone.Fig. 2.4 The efficiency of the power unit CP modeled by a flat permeable plate, ...Fig. 2.5 Turbine efficiency vs. “filtration” speed. GGS model.Fig. 2.6 Pressure factor CD = Cp/s according to the original (1) and modified (2...Fig. 2.7 Efficiency and resistance of an orthogonal turbine with a turbine lengt...Fig. 2.8 Pressure factor on a permeable circular disc. 1 – G. Kh. Sabinin’s mode...Fig. 2.9 An example of the energy characteristics of a high-speed wind turbine w...Fig. 2.10 Same as in Figure 2.9, but in the coordinates of wind speed and a powe...Fig. 2.11 Flow diagram of the power unit blade.Fig. 2.12 Factor of pulling force for NACA 00XX profiles with infinite blade len...Fig. 2.13 Factor of normal force for NACA 00XX profiles with infinite blade leng...Fig. 2.14 NACA 0018.Fig. 2.15 NACA 0015.Fig. 2.16 GAW-1.Fig. 2.17 Characteristics of the best orthogonal and collinear aggregates with a...Fig. 2.18 Efficiency of the Sandia two-blade orthogonal turbine. Shading σ from ...Fig. 2.19 Field tests of collinear units with a diameter of 10 m (top) and 91.4 ...Fig. 2.20 Power of a Darrieus type two-blade orthogonal wind turbine depending o...Fig. 2.21 Tests of an orthogonal wind turbine with straight blades performed at ...Fig. 2.22 Power factor CN of orthogonal turbines vs flow rate. Test results: 1 –...Fig. 2.23 Torques on the turbine axis (Nm) as a function of the angle of the bla...Fig. 2.24 Tidal parameters and power of the tidal power plant as a function of c...

3 Chapter 3Fig. 3.1 Design options for collinear power units.Fig. 3.2 Modern low-speed wind turbine (“American”).Fig. 3.3 The torque factor of the unit is shown in Fig. 3.2.Fig. 3.4 Unit efficiency according to Fig. 3.2.Fig. 3.5Fig. 3.6 Efficiency contours of power generating units, CP, with Espero blades (...Fig. 3.7 Flow diagram of the unit.Fig. 3.8 Dependence of the relative pressure drop across the unit vs the relati...Fig. 3.9 Comparison of the results of calculations (lines) and experiments (poin...Fig. 3.10 Influence of the blade airfoil shape on the turbine efficiency, r0 = 0...Fig. 3.11 Influence of the design of two-blade units. The Espero airfoil, φ0 = 2...Fig. 3.12 Distribution of longitudinal (ux=Ux/U0) and radial (ur=Ur/U0) velociti...Fig. 3.13 The vectors of flow velocities in the plane passing through the unit r...Fig. 3.14 The position of the rotor in front of the tower (upwind) – to the left...Fig. 3.15 Single-blade self-aligning unit.Fig. 3.16 A Vordant hydraulic unit turning downstream by the flow. Power 750 kW ...Fig. 3.17 An AWT turbine behind the support tower, the diameter is 26.2 m, power...Fig. 3.18 A series of Howden optimized wind turbines (England).Fig. 3.19 Mod 5B.Fig. 3.20 Central turbine hall (right) of a high-power wind turbine with shorten...Fig. 3.21 Wind turbines without multipliers, with a central ejection jet and a l...Fig. 3.22 Energy characteristics of two-blade wind turbines with different layou...Fig. 3.23 Largest American wind turbines tested.Fig. 3.24 Control wind turbine without a multiplier with a linear (arc) generato...Fig. 3.25 Open-HydroGroup Hydro Turbine. The diameter of 12m, central hole of D ...Fig. 3.26 Lincoln Electric wind turbine modernization scheme. The dimensions in ...Fig. 3.27 The relative power of prototypes of serial collinear wind turbines is ...Fig. 3.28 Energy received by different wind turbines per unit area of the swept ...Fig. 3.29 Diagram of concentrators including a confuser in front of the impeller...Fig. 3.30 Andreau – Enfield wind turbine system.Fig. 3.31 A wind turbine with cylinders (1) rotated by electric motors (2) fixed...Fig. 3.32 Hydraulic turbine with a Lunar Power concentrator system. The power ca...Fig. 3.33 Results of turbine tests in oblique flow in the presence of a concentr...Fig. 3.34 Anthony Bellve turbines (Crest Energy, Ltd) in the Kaipara Energy Proj...Fig. 3.35 Vortec wind turbines system with diffusers, self-orientated in the win...Fig. 3.36 Wind turbine with a diffuser concentrator. The power capacity is 30 kW...Fig. 3.37 Scheme of a multi-unit wind farm with horizontal units and concentrato...Fig. 3.38 Multi-tiered wind farm between the concentrator houses. Vortec Energy ...Fig. 3.39 Multi-unit wind farm on a support tower. Automatic wind orientation.Fig. 3.40 “Tornado” system for converting the energy of currents. In the air flo...Fig. 3.41 Dome wind farm. Unit 1 is located in the vacuum zone, generator (2) — ...Fig. 3.42 Ejector wind turbine. 1) — accumulator reflector, 2) — concentrator (c...Fig. 3.43 Ejection of air to the walls of the water flow concentrator.Fig. 3.44 Ejector hydroelectric complex with a high-speed wind turbine on a wate...Fig. 3.45 Optimization of the ejector system.Fig. 3.46Fig. 3.47 V90-3 modern wind turbine.Fig. 3.48 NedWind 40.Fig. 3.49 NedWind 25.

4 Chapter 4Fig. 4.1 Orthogonal wind turbines with a vertical axis.Fig. 4.2 Orthogonal hydro turbines with a horizontal axis.Fig. 4.3 Two-blade Sandia-34 turbine. Efficiency Sandia-34 turbine.Fig. 4.4 Commercial sample of the high-speed troposkein wind turbine with a chan...Fig. 4.5 “L-180 Poseidon” according to the Ljungstrom project. Canadian Patent 3...Fig. 4.6 Maximum efficiency of orthogonal power unit depending on the Reynolds c...Fig. 4.7 The efficiency of the wind turbine in the function of the relative velo...Fig. 4.8 Turbine with the same one blades on the radius 0.32 and 0.16 m (points ...Fig. 4.9 Efficiency two-bladed wind turbine with a profile NASA 0018 (1) and NAS...Fig. 4.10 Energy characteristics of the wind turbine with one (1) or two (2) bla...Fig. 4.11 Recommended options for the design of the rotor nominal power of 1 kW ...Fig. 4.12 A 16 kW two-tier wind turbine at the site in Dubki (Dagestan)-on the l...Fig. 4.13 Two-blades orthogonal unit on tests in TSAGI.Fig. 4.14 Capacity at the terminals of the generator 4-blade VAWT (left) and cap...Fig. 4.15 Capacity at the terminals of the generator, depending on the wind spee...Fig. 4.16 Capacity of straight blade hydro turbines with length L=5.4m, Blades G...Fig. 4.17 The output of a wind turbine of diameter D=2m, b=0.16m, length L=3m: 1...Fig. 4.18 The efficiency of single-blade wind turbines of different diameters D=...Fig. 4.19 The efficiency of single-blade wind turbine with NASA 0018 profile.Fig. 4.20 Turbine diameter effect D=0.64 ; 1.28; 1.92m (points 1, 2, 3), GAW-1, ...Fig. 4.21 The capacity of a VAWT of diameter D=2m, GAW- 1, 30, L=3m, U=10m/s.1-o...Fig. 4.22 The output of a wind turbine of diameter D=2m, GAW= 1, 30, L=3m, U=10m...Fig. 4.23 The relative velocity of flow in the turbine (u/U) on the approach to ...Fig. 4.24 The efficiency of a turbine with two identical blades (b=0.16 m, GAW1,...Fig. 4.25 The efficiency of turbines with a diameter of 10 m with blades profile...Fig. 4.26 Version of a single-blade six-tier turbine, patented by author.Fig. 4.27 One blade on a disk with a balancer. Chord 50 mm. (right, line 1) and ...Fig. 4.28 Energy efficiency CP as a function of blade speed (V/U) at different R...Fig. 4.29 Two-tier, two-blades rotor in a large tray (2×1.5×20 m) D=400 mm, b=63...Fig. 4.30 The optimal model, tested in a tray with a width of 1 m. D=200mm, b=30...Fig. 4.31 Orthogonal single-blade wind turbines to the test in the largest pipe ...Fig. 4.32 Blade for head samples of large wind turbines tested in a large TsAGI ...Fig. 4.33 Capacity at the terminals of the generator two-bladed machine with a s...Fig. 4.34 Change of current in one of the generator phases in time at two-blade ...Fig. 4.35 Energy efficiency of the rotors: 1-single-blade rotor, 2, 3-double-bla...Fig. 4.36 Network wind turbine with a gear-motor 50 kW. Two tiers with two blade...Fig. 4.37 Balanced six-tier single-blade turbine. A-support-generator fixed unit...Fig. 4.38 Orthogonal wind turbine with acceleration turbine Savonius on the axis...Fig. 4.39 Balanced helical turbine with one working and one acceleration blades.Fig. 4.40 The console model of wind turbine with turbine double action.Fig. 4.41 Helical turbine double action with constructive ties between the blade...Fig. 4.42 Helical turbine assembly for a network with asynchronous generators. T...Fig. 4.43 Spiral turbine model on magnetic suspension.Fig. 4.44 The wind speed outside the multi-blade turbine (left U=2.4 m/s) is alm...Fig. 4.45 Efficiency of an orthogonal turbine with shading 0.3÷0.4 at fixed blad...Fig. 4.46 A cross-section of the blade is optimal. The rotary pen (3) of the bla...Fig. 4.47 The scheme of flow around the working blade AB, the sock of which (a) ...Fig. 4.48 Efficiency of the 2 stories rotor with 3 blades in each stories (1). 2...Fig. 4.49 Efficiency of 2 stories rotor with 2 blades in each stories. b=7.1 (1)...

5 Chapter 5Fig. 5.1 Scheme of currents in a turbine zone.Fig. 5.2 Efficiency of the power unit CP modelled by a flat permeable plate, dep...Fig. 5.3 Torque moment from one blade orthogonal wind turbine. D=1.4m, chord b =...Fig. 5.4 Power of straight blade hydro turbines with length L = 5.4m, Blades GAW...Fig. 5.5 Distribution of loadings on the route of blades (at the left) and the s...Fig. 5.6 Zones of 2% of distortion of the field of speeds at different angle of ...Fig. 5.7 Multiblades wind power system on the tower from usually HAWT.Fig. 5.8 Averaged power of windmill D=50m with one blade NASA0021, b=1m, L=3m as...Fig. 5.9 The first one-sided windmill with large relative diameter. Doubki, USSR...Fig. 5.10 Radical lowering of friction in support. The node (5) - at the left is...Fig. 5.11 Carts with blades move on the ring route. Above - a fragment of the pa...Fig. 5.12 Blades on a rigid ring, but the ring itself chooses a position of dyna...Fig. 5.13 Models of multi-blade rotors with linear generators on tests in big wi...Fig. 5.14 Results of tests of hydro turbines. D=2.7m, b=0.12m, L=0.36m, U=2.30-2...Fig. 5.15 General view of the power unit 2.5. 1, 2) the blades focused in opposi...Fig. 5.16 The linear generator with opposite moving of rings.Fig. 5.17 A general view of the model prepared to test in a wind tunnel.Fig. 5.18 The special orientation design for the counter-rotating turbines.Fig. 5.19 The load on a single blade of the 6-blade unit at a flow rate of 3.5 m...Fig. 5.20 The flow velocity module at the blade track points that are distanced ...Fig. 5.21 The windmill is going on the pontoon in dry dock and afloat delivered ...

6 Chapter 6Fig. 6.1 Six tier balanced turbine with one blade in each tier.Fig. 6.2 Turbine common views.Fig. 6.3 Completely balanced turbine concerning the central point of contact.Fig. 6.4 One blade on a disk with the balance weight.Fig. 6.5 Profile and general view of the blade of the turbine.Fig. 6.6 Fragment of an aluminum shaft.Fig. 6.7 Turbine power P opposite speed relation.Fig. 6.8 The generator with the constant magnets ГВ-2/650-110-12Г ( «Erga», Kalu...Fig. 6.9 From left - a comparison of passport (1) and experimental (2) data. Rig...Fig. 6.10 Rotational speed of the turbine (1) and the voltage on the generator (...Fig. 6.11 Rotational speed of the turbine (1) and power at the generator termina...Fig. 6.12 Rotational speed of the turbine (1) and power at the generator termina...Fig. 6.13Fig. 6.14 Scheme of micro-hydroelectric power station 1) turbine (2.7 × 0.64 m2)...Fig. 6.15 Completely balanced turbine with 2 blades on each tier.Fig. 6.16 Efficiency of two blades machine. Solidity 0.2.Fig. 6.17 Efficiency curve. Solidity 0.3.Fig. 6.18 Short hydro-turbine diameter of 1.6 m and a height of 0.9 m with 3 bla...

7 Chapter 7Fig. 7.1 The tidal parameters in the basin of TPP.Fig. 7.2 General view of the orthogonal multi blade power unit. The top of the c...Fig. 7.3 Cross section of the rings.Fig. 7.4 The model of multi-blade rotor in the hydraulic channel.Fig. 7.5 The efficiency factor of the rotor of a multiblade hydropower unit acco...Fig. 7.6 The power factor of the multi blade turbine CN in the function of the r...Fig. 7.7 The tidal power station in the eastern part of Bay of Fundy (Minas Basi...Fig. 7.8 TPP without the dam near Auckland. 1- TPP general, capacity up to 1.3GW...Fig. 7.9 The tidal power station in the narrowness of Tugursky Bay. The width of...Fig. 7.10 The water levels and flow speeds in Tugur and Lindholm (solid lines) s...Fig. 7.11 The tidal power station in the northern part of Penzhenskaya Bay. The ...Fig. 7.12 The conditional cross section (a) and the unit of the turbines (b), lo...Fig. 7.13 Total power from two TPP. In the inside straight α = 0.2.Fig. 7.14 The bays of Iceland to build TPP with basis power.

8 Chapter 8Fig. 8.1 Isolines of mean streams of wind power (kW/sq.m) over Moscow.Fig. 8.2 Wind power density (kW/m2) that was exceeded 5%, 32%, 50%, 68%, and 95%...Fig. 8.3 The blocks of High-Altitude Wind Power Plant.Fig. 8.4 High-Altitude Wind Power Plant (HAWPP) with 3 blocks included Orthogona...Fig. 8.5 Maximum efficiency of a frame two-bladed rotor with a solidity 0.3 reac...Fig. 8.6 The relative loads acting on one tier of two-bladed turbine. ReV= 8.5×1...Fig. 8.7 Left-. Longitudinal section of plant blades (one layer). The Max. lifti...Fig. 8.8 Coefficient of a lifting force of a wing on tests in water as an angle ...Fig. 8.9 Options of an arrangement of a crack for giving of a jet, b = 200 mm, a...Fig. 8.10 Option 1. Jet on shady side at the end of a wing.Fig. 8.11 At negative corners a jet on the shaded party. Jet influence at small ...Fig. 8.12 Jet influence at large numbers Strukhal.Fig. 8.13 Option 2 – a jet at the beginning of a wing. Small numbers Strukhalya....Fig. 8.14 Option 2. Large numbers Strukhal. The jet on shady side of a profile c...Fig. 8.15 General view of model and Scheme of giving of a stream. On the opposit...Fig. 8.16 The turbine model with hollow blades and shaft.Fig. 8.17 1) sock of the blade, 2) an alignment of the greatest thickness o the ...Fig. 8.18 Example of the blade’s profile (top)1,2 - nozzles, forming a wall jets...Fig. 8.19 Sections of channels supplying air to blade surface for circulation co...

9 Chapter 9Fig. 9.1 General view of the car with spirals (up) and a section along the spira...Fig. 9.2 Fragment of a spiral turbine in a single-blade rotor variant. The blade...Fig. 9.3 High maneuverability vehicle that does not require expensive equipment.Fig. 9.4 Geometric parameters and flow diagram of the wing profile.Fig. 9.5 Components of the blade load in the absence of a jet.Fig. 9.6 Components of the load on the blade under the action of the jet on the ...Fig. 9.7 Two rotors with parallel axes above the roof of the vehicle.Fig. 9.8 Turbines with straight blades approximating the spiral.Fig. 9.9 Arrangement of turbine blades with compensation of centrifugal forces.

10 Chapter 10Fig. 10.1 Jet stream.Fig. 10.2 Average wind power density [1].Fig. 10.3 Different types of kites.Fig. 10.4 Buoyant Airborne Turbine.Fig. 10.5 Vertical axis high altitude wind turbine.Fig. 10.6 Tether designed for high altitude wind power generation with two power...Fig. 10.7 Relative flow conditions at the origin O, an arbitrary point T along t...Fig. 10.8 Ground-based power generation.Fig. 10.9 Pumping cycle with reel-out stage (top) and reel-in stage (bottom) [29...Fig. 10.10 Converter topology in the airborne unit for ABM supported on board po...Fig. 10.11 HAT in low intermittent wind.Fig. 10.12 Production cost [33].Fig. 10.13 Global distribution of the wind power density on 1 December 2014 9:00...Fig. 10.14 Overview of major companies [34].Fig. 10.15 GIS map of wind power in period I, 30 m.Fig. 10.16 GIS map of wind power in period II, 30 m.Fig. 10.17 The overall GIS map of wind power for the center of Iran, 30 m.Fig. 10.18 Wind power density averaged over a 20-year time span across various p...Fig. 10.19 Absolute wind velocities averaged over a 20-year time span across var...Fig. 10.20 Wind power density averaged by month from 2010 to 2013 to a height of...

11 Application 1Fig. Ap1.1 Rotor IAT21 L3.Fig. Ap1.2 Parameters of rotor.Fig. Ap1.3 Flow around the blade.Fig. Ap1.4 2D rotor grid IAT21 L3.Fig. Ap1.5 Instant speed distribution near rotor (Ω=500 rpm).Fig. Ap1.6 Instant speed distribution (Ω=500 rpm).Fig. Ap1.7 Instant pressure distribution (Ω=500 rpm).Fig. Ap1.8 Dependence of rotor thrust on rotation speed.Fig. Ap1.9 Dependence of rotor power on speed of rotation.Fig. Ap1.10 Geometric parameters and airfoil motion pattern.Fig. Ap1.11 Computational grid.Fig. Ap1.12 Average speed (m/s).Fig. Ap1.13 Instantaneous speed (m/s).Fig. Ap1.14 Horizontal force (N).Fig. Ap1.15 Vertical force (N).Fig. Ap1.16 Moment (N m).Fig. Ap1.17 Typical pressure field at the moment of jet outflow, Pа.Fig. Ap1.18 The typical velocity field at the moment of the jet outflow, m/s.Fig. Ap1.19 Horizontal force.Fig. Ap1.20 Vertical force.Fig. Ap1.21 Мoment.Fig1. Ap1.22 Moment [4].Fig. Ap1.23 Typical pressure field at the moment of jet outflow, Pa.Fig. Ap1.24 Typical velocity field at the moment of jet outflow, m/s.Fig. Ap1.25 Horizontal force (only aerodynamic component - on the left, with the...Fig. Ap1.26 Vertical force (only aerodynamic component - left, with the addition...Fig. Ap1.27 Moment (only aerodynamic component) - on the left, with the addition...Fig. Ap1.28 Typical pressure field at the moment of jet outflow, Pa.Fig. Ap1.29 Typical velocity field at the moment of jet outflow, m/s.Fig. Ap1.30 Horizontal force (aerodynamic component only) - on the left, with th...Fig. Ap1.31 Vertical force (aerodynamic component only) - on the left, with the ...Fig. Ap1.32 Moment (aerodynamic component only) - on the left, with the addition...Fig. Ap1.33 Typical pressure field at the moment of jet outflow, Pa.Fig. Ap1.34 Typical velocity field at the moment of jet outflow, m/s.Fig. Ap1.35 Horizontal force (aerodynamic component only) - on the left, with th...Fig. Ap1.36 Vertical force (aerodynamic component only) - on the left, with the ...Fig. Ap1.37 Moment (aerodynamic component only) - on the left, with the addition...

Wave, Wind, and Current Power Generation

Подняться наверх